向成斌——中国科学技术大学——植物环境胁迫生物学(耐旱,耐盐,耐低硫营养的遗传基础与分子机理,以及耐逆基因的分离克隆);天然抗氧化物谷胱甘肽在植物上的生物学功能和其合成调控机制;资源基因发掘与转基因技术
植物环境胁迫生物学(耐旱,耐盐,耐低硫营养的遗传基础与分子机理,以及耐逆基因的分离克隆);天然抗氧化物谷胱甘肽在植物上的生物学功能和其合成调控机制;资源基因发掘与转基因技术。目前研究内容主要包括植物耐逆分子机制探索与耐逆基因资源的发掘;植物硫分子营养研究以及耐逆基因在农业上的应用。
【表观遗传蛋白修饰专题】详解赖氨酸巴豆酰化研究进展
随着人们对蛋白质功能和生物学机制研究的逐步深入,蛋白质翻译后修饰的重要性与日俱增。比如磷酸化、乙酰化、泛素化、琥珀酰化等翻译后修饰是真核细胞生物调节蛋白质发挥生物学功能的重要方式,对发育、代谢、疾病等
罗氏联手Epizyme调查表观遗传/免疫肿瘤组合疗法tazemetostat/Tecentriq治疗淋巴瘤的潜力
tazemetostat是一种表观遗传学药物,Tecentriq是一种免疫肿瘤学疗法,2者组合标志着当前肿瘤治疗的一个新前沿。
遗传学家:基因编辑技术可改变生命及地球所有事物
据国外媒体报道,“CRISPR”是一组名词的首字母缩写,其全称为“成簇的规律性间隔的短回文重复序列”。这项技术可以对基因组进行编辑,是一种可以改变DNA的生物学系统。因此,世界许多遗传学家和生化学家普遍认为,
遗传学家性别发育研究遇尴尬
Eric Vilain对性发育紊乱研究的复杂性和争议性深有感触。图片来源:David Walter Banks我们在尝试聆听社会,但是同样的,我们也在致力于形成数据和证据。上世纪80年代,作为法国巴黎医学院的一名学生,Eric Vilain开
细胞遗传学技术新进展,助力临床研究与诊断
安捷伦公司是基因组学芯片和二代测序靶向序列捕获领域的全球领导者。安捷伦的染色体微阵列芯片,又称比较基因组杂交芯片(microarray-based comparative genomic hybridization,aCGH)在临床科研中,特别是产前诊断
Nat Med:表观遗传改变或可促进肥胖相关的糖尿病发生
肥胖是引发2型糖尿病的风险性因子,然而并不是所有肥胖个体都会患2型糖尿病,近日发表在国际著名杂志Nature Medicine上的一项研究报告中,来自瑞典卡罗琳学院和法国健康医学研究所的研究人员通过研究鉴别出了和机体炎症及2型糖尿病相关的表观遗传学改变,该研究或可帮助揭示肥胖进展过程中表观遗传改变如何诱发机体对胰岛素的耐受性及糖尿病的发生机制。
遗传学大牛Nature Methods发布CRISPR重要成果
CRISPR-Cas9系统使得研究人员能够编辑许多生物体和细胞类型的DNA序列。然而,科学家们也日益认识到可以利用它来激活基因的表达。为此,他们构建出了大量可激活Cas9蛋白的合成基因来研究基因功能或在潜在的治疗方法中
【重大发现】表观遗传修饰家族又添新成员—三羟基丁酰化
组蛋白密码蕴含了基因序列和生物个体性状间的关键调控信息。它动态地调节染色质的结构和功能,极大扩展了传统遗传密码的信息含量。组蛋白修饰是表观遗传学密码的重要组成部分,调控着基因表达等众多与染色质相关的生
《哈利波特》竟然是绝佳的遗传学启蒙读物!
我们都知道科学是十分复杂的,它充斥着各种复杂的概念与高大上的词汇。但它同时是我们理解世界并推动其发展的最佳的工具。因此,在幼年时期多接触些科学知识是很重要的。为了达到这一目的,一位研究者给出了让孩子们学习遗传学知识的建议:跟他们讲哈利波特的故事