Tissue Engineering Part A:细胞疗法改善肾脏移植的需求
2019年3月15日 讯 /生物谷BIOON/ --维克森林再生医学研究所(WFIRM)的科学家们正在研究一种治疗慢性肾病的有希望的方法 - 使用治疗细胞再生受损组织。通过利用人类羊水来源干细胞的独特特性,WFIRM科学家已经证明,这些细胞可能有助于在肾脏疾病的临床前模型中恢复器官功能。“我们的研究结果表明,这种类型的干细胞可用作现成的通用细胞来源,可为患有这种慢性和衰弱性疾病的患者提供替代治疗策
J Neurosci:忘却比记忆需要更多的大脑能量
2019年3月12日 讯 /生物谷BIOON/ --德克萨斯大学奥斯汀分校的研究人员通过神经影像学发现,选择忘记某些东西可能需要花费更多的精神努力才能记住它。发表在“神经科学杂志”上的这些研究结果表明,为了忘记不必要的经历,应该更多地关注它。这一令人惊讶的结果扩展了先前研究的结论,其重点是通过将注意力从不想要的经历重新引导或抑制记忆的检索来减少对不需要的信息的关注。“我们可能希望丢弃引发适应不良反
能量过多或是导致癌症发生的原因!
2019年2月12日讯 /生物谷BIOON /——目前已知肥胖、糖尿病和慢性炎症是癌症的主要风险,但是我们却不知道这些疾病是如何一步步演化为癌症以及为什么健康的饮食和规律的锻炼可以帮助防止这个过程。一项最近发表在《Evolution, Medicine and Public Health》的研究提供了一个有趣的理论:这些疾病也许通过给细胞提供过量的能量使细胞过度生长从而引起它们癌变。图片来源:Na
拯救小胶质细胞、恢复能量 能否成为阿尔茨海默病新希望?
2018年是阿尔茨海默病药物开发又一个糟糕的年头。该年度出现了多项重大临床药物试验失败,也有行业分析师将阿尔茨海默症药物开发称为“一个无情的灾难区”。首先,让我们回顾一下这些重大失败:· 武田制药和Zinfandel公司对吡格列酮(pioglitazone)治疗阿尔茨海默病所致轻度认知障碍试验进行中期分析后,决定放弃这项为期五年的临床3期试验TOMORROW。· 勃林格殷格翰2018年
重编程机体的能量途径来促进肾脏损伤的自我修复!
2018年12月2日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Nature上的研究报告中,来自凯斯西储大学医学院等机构的科学家们通过研究发现了一种新型通路或能增强损伤肾脏的修复功能;相关研究结果或能帮助研究人员开发新型药物来阻断或逆转人类严重肾脏疾病的进展,同时也有望应用于开发治疗诸如心脏、肝脏等器官的病变。图片来源:Harrington Discovery Institute肾脏能
小脑中的细胞拥有不同的代谢需求
近日,来自美国的研究人员发现,大脑中细胞的代谢需求并不一致。“敲除”一种调节线粒体的酶会使小鼠的小脑发育比其他大脑区域更加受到抑制。这项研究结果近日发表在Science Advances上。研究通讯作者、埃默里大学医学院Winship癌症研究所的Cheng-Kui Qu博士说:“这项发现对于我们理解小脑发育障碍、退行性疾病,甚至是癌症背后的分子机制具有非常大的帮助。”小脑长期以来一直被
从结构上揭示分枝杆菌能量代谢机制
2018年11月7日/生物谷BIOON/---在一项新的研究中,中国科学院生物物理研究所的饶子和(Zihe Rao)院士、Quan Wang研究员、孙飞(Fei Sun)研究员及其同事们分离出耻垢分枝杆菌(Mycobacterium smegmatis)的呼吸链超级复合物(respiratory supercomplex),并且利用低温电镜(cryo-EM)技术在3.5 Å的分辨率下可视
全球富血小板血浆疗法市值将超5亿美元 满足庞大的临床需求
近期,全球知名市场研究咨询机构——透明市场研究(Transparency Market Research)发布了最新报告。报告指出,2017年全球富血小板血浆疗法市场值为1.952亿美元,2018年至2026年间市场预计以12%的复合年增长率增长,2026年全球市场值将达5.435亿美元。近年来,由于骨科和运动损伤比例上升,全球富血小板血浆疗法市场正在迅速增长,全球越来越多的整形外科手术以及慢性或
海尔云芯超低温:满足了各类生物样本库智能化样本管理的需求
“海尔云芯达到了全流程无纸化、没有人工干预的样本质量控制的要求,满足了不管是大型样本库还是小型样本库,不管是队列样本库还是临床单型样本库智能管理样本的需求”。在日前举行的中国生物样本库-理论与实践培训大会上,上海瑞金医院内分泌代谢病生物样本库主任戴蒙教授高度评价海尔云芯物联网超低温冰箱。传统超低温并不适应不同类型生物样本库的样本管理需求对于大型生物样本库,为了科学有序、准确高效地管理规模庞大的生物
Sci Adv:科学家发现控制能量稳态的蛋白受体
2018年8月25日讯/生物谷BIOON /——和大多数体内平衡系统一样,哺乳动物的肥胖是在上下边界条件之间进行调整的。尽管科学家们已经知道瘦素和皮质激素-4受体(MC4R)信号参与设定能量的上下限阈值,但是科学家们还并不清楚控制上下稳态边界的生物学机制。和MC4R不同的是,在正常情况下清除MC3R并不会导致可测量的进食增多或者是代谢减退。图片来源:Sci Adv但是近日来自范德堡大学医学院和密西