住友制药非典型抗精神病药物罗舒达®(Latuda,鲁拉西酮)在中国上市
2019年09月09日讯 /生物谷BIOON/ --日本药企住友制药(Sumitomo Dainippon Pharma)近日宣布,其中国子公司住友制药(苏州)有限公司已在中国市场推出非典型抗精神病药罗舒达®(Latuda®,通用名:lurasidone HCl,盐酸鲁拉西酮片),该药用于精神分裂症成人患者的治疗。Latuda®是住友制药的一款核心产品,目前已在多个国
Cell:生酮饮食有益新证据!酮体产生增强肠道干细胞的再生能力
2019年8月28日讯/生物谷BIOON/---在一项新的研究中,来自美国麻省理工学院的研究人员发现了生酮饮食或高脂肪饮食的意外效果:高水平的酮体(ketone body),即脂肪分解产生的分子,有助于肠道维持大量的成体干细胞,这是对于保持肠道内壁健康至关重要。他们还发现即便在没有摄入高脂肪饮食的情形下,肠道干细胞会也产生异常高水平的酮体。这些酮体激活了一种众所周知的称为Notch的信号通路,该通
生酮饮食或具有潜在的抗癌效应!
2019年8月21日 讯 /生物谷BIOON/ --我们都知道,控制血糖水平能够帮助有效避免或控制糖尿病进展,近日,一项刊登在国际杂志Cell Reports上的研究报告中,来自德克萨斯大学的研究人员通过研究发现,限制血糖水平或许也能够有效抑制某些癌症发生。图片来源:University of Texas at Dallas文章中,研究者成功抑制了肺癌小鼠机体中循环葡萄糖的水平,给予小鼠生酮饮食就
住友制药Latuda(盐酸鲁拉西酮)在日申请上市,今年1月获中国批准
2019年08月07日讯 /生物谷BIOON/ --住友制药(Sumitomo Dainippon Pharma)近日宣布,已在日本提交非典型抗精神病药物lurasidone HCl(盐酸鲁拉西酮片,英文商品名:Latuda,中文商品名:罗舒达®)的一份新药申请,寻求批准在日本生产和销售该药,用于治疗精神分裂症和双相抑郁症。lurasidone(鲁拉西酮)是一种非典型抗精神病药物,由住友
悉尼大学:革新性呼吸酮检测设备或可取代糖尿病针刺测试
我国是糖尿病大国,根据2017年国际糖尿病联盟(IDF)发布的最新糖尿病地图显示,中国糖尿病人群已达1.14亿,居世界首位。糖尿病患者需要随时掌握自己的血液状况,最常见的方式就是通过采血监测血液水平。而近期来自悉尼大学、澳科环球(AusMed Global)和澳大利亚贸易投资委员会的研究人员在香港国际医疗及保健展上推出了一款突破性的呼吸酮分析仪,并即将应用于临床试验,在未来几年或可以通过呼吸检测替
梅斯医学诚邀您参加2019年DIA中国年会,聚力夯实新药研发
黄体酮能否保胎?迄今最大规模研究回答60年争辩
这项研究的发现“对于临床实践具有重大意义,可以挽救数千名可能无法来到世上的婴儿。”据统计,近20%的怀孕会遭遇流产风险。孕期各项检查的数值高低往往都牵动着准爸妈的心,其中黄体酮(也称孕酮)便是最受关注的指标之一。但孕早期是否需要补充黄体酮来“保胎”,一直备受争议。今天,《新英格兰医学杂志》最新发表了有史以来规模最大的一项试验,来回答黄体酮对降低流产风险的作用。这项研究名为PRISM,是
Hyleukin-7(长效二聚IL-7)多水平作用T细胞成熟,为癌症免疫疗法架桥铺路
2019年04月22日/生物谷BIOON/--NeoImmuneTech是一家专注于开发T细胞疗法的生物技术公司。近日,该公司宣布,美国食品和药物管理局(FDA)已授予Hyleukin-7(rhIL-7-hyFc, NT-I7)孤儿药资格,这是一种T细胞放大器,开发用于特发性CD4+淋巴细胞减少症(ICL)的治疗。Hyleukin-7也于2017年被欧洲药品管理局(EMA)授予了孤儿药资格,是第一
Nature:我国科学家解析出人LAT1–4F2hc异聚氨基酸转运蛋白复合物的三维结构
2019年4月14日讯/生物谷BIOON/---L型氨基酸转运蛋白1(LAT1,也称为SLC7A5)以一种不依赖于钠和pH的方式触发较大中性氨基酸的跨膜渗透。作为APC超家族(amino acid–polyamine–organocation superfamily)中的一种反向转运蛋白,LAT1促进甲状腺激素、药物和L-3,4-二羟基苯丙氨酸等激素前体跨膜渗透。人们已在多种肿瘤细胞中观察到LAT
研究揭示喹诺酮抗性蛋白介导的细菌耐药机制
细菌抗生素耐药性是预防传染病的重大威胁,通常是由质粒转移或基因突变引起的。当细菌暴露于抗生素环境中会通过提高细菌的突变率筛选出适应抗生素环境的基因突变,结果导致临床环境中耐药菌株的出现。质粒驱动抗生素抗性基因的水平转移,引发细菌耐药性的产生。此外,质粒和细菌染色体之间的相互作用会影响抗生素抗性的传播,了解这些过程背后的机制将提供细菌如何适应抗生素环境的见解,并有助于优化抗菌策略。喹诺酮