打开APP

海绵共附生毛球腔属真菌活性代谢产物及降脂机制研究取得进展

海绵是多孔滤食性无脊椎动物,是大量海洋微生物的栖息地,是海洋珊瑚礁生态系统的重要组成部分。海绵自身物理防御差,海绵共附生的微生物往往能够产生活性代谢产物来协助海绵抵抗捕食者,这些代谢产物结构独特,生物活性丰富,是海洋药物及其先导化合物的重要来源。中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室和广东省海洋药物重点实验室刘永宏团队长期从事海洋微生物活性

2020-08-07

Nat Commun:科学家有望将纳米技术和基因工程技术相结合来开发新型抗癌疗法

2020年8月19日 讯 /生物谷BIOON/ --由于癌症耐药性的出现、对肿瘤组织靶向性变差及癌症随后的转移,具有选择性抗癌活性的化疗药物的开发如今对科学家们越来越没有吸引力,而在具有肿瘤特征的细胞类型中,研究者发现,癌症干细胞与患者癌症进展和转移密切相关,这就反映了癌症干细胞能够自我更新并且进入机体的循环系统中。图片来源:JAIST近日,一项刊登在国际杂

2020-08-19

肿瘤活性磷疗纳米制剂研发获进展

近日,中国科学院深圳先进技术研究院材料所(筹)材料界面研究中心研究员喻学锋课题组在开发天然生物活性纳米治疗制剂领域取得新进展。癌症是现代社会影响人类身心健康的最大杀手之一。目前临床上最常用的小分子化疗药物在实际治疗过程中往往伴随着严重的毒副作用,给病患造成巨大痛苦。因此,对新的具有潜在抗癌效用分子和材料的筛选和开发有着重要的科研价值和临床应用意义。黑磷(黑磷

2020-08-05

纳米海绵“吸走”新冠病毒

加州大学圣地亚哥分校(UCSD)的张良方教授团队联合波士顿大学(Boston University)的Anthony Griffiths教授团队,在纳米领域的顶尖期刊Nano Letters上发表了他们的最新研究结果——该联合团队开发了一种纳米海绵,已在细胞实验中证实可以“吸走”新冠病毒,让它们的感染能力下降90%!后续的动物研究正在进行之中。张良方教授是纳

2020-06-27

纳米颗粒如何助力癌症研究?

本文中,小编盘点了多篇科学家们发表的重要研究成果,让我们一起看看纳米颗粒如何助力科学家们在癌症领域的研究,分享给大家!图片来源:University of Queensland【1】Nat Cell Biol: 纳米颗粒能够用于治疗耐受性淋巴癌doi:10.1038/s41556-020-0507-y根据最近在Nature Cell Biology杂志上发表

2020-07-23

Nature 简单的分子自组装成纳米链条

2020年7月23日讯 /生物谷BIOON /——非共价相互作用可以将分子组装成复杂的结构,但对最终拓扑的控制有限。一种组装纳米链的方法展示了如何针对特定的结构进行组装。复杂的分子结构通常是通过将各种构件逐步连接在一起来构建的。但有时,复杂的结构来自于单个成分的自我组装。Datta等人发表在Nature杂志上的文章展示了多链烷(纳米级环链)是如何通过一个简单分

2020-07-23

用于帕金森病治疗的刺激干细胞生长的纳米结构

2020年7月23日讯 /生物谷BIOON /——香港浸会大学(HKBU)的研究人员发明了一种纳米结构,可以刺激神经干细胞分化成神经细胞。他们发现,将这些神经细胞移植到患有帕金森病的大鼠体内,随着新细胞取代移植部位周围受损的神经细胞,这些神经细胞逐渐改善了大鼠的症状。这项新发明为干细胞治疗提供了有希望的见解,并为帕金森病的新治疗带来了希望。用干细胞治疗帕金森氏

2020-07-23

Science子刊:利用M3mP6多肽高负荷纳米颗粒有望治疗心脏病

2020年7月23日讯/生物谷BIOON/---在一项新的研究中,来自美国伊利诺伊大学芝加哥分校的研究人员开发出一种新药,可以防止血凝块(blood clot),同时不会导致出血风险增加,而出血是目前所有抗血小板药物的常见副作用。相关研究结果发表在2020年7月15日的Science Translational Medicine期刊上,论文标题为“High-

2020-07-23

Nano Letter:细胞纳米海绵显著抑制SARS-CoV-2感染细胞!

2020年6月23日讯 /生物谷BIOON /——包裹在人肺细胞膜和人体免疫细胞膜中的纳米颗粒可以吸引和中和细胞培养中的SARS-CoV-2病毒,导致病毒失去劫持宿主细胞和繁殖的能力。6月17日发表在《纳米快报》(Nano Letters)杂志上的第一批数据描述了抗击COVID-19的新方向。这种"纳米海绵"由加州大学圣地亚哥分校(UCSD)的工程师开发,并

2020-06-23

纳米催化医学研究取得进展

“纳米催化医学”是由中国科学院院士、中科院上海硅酸盐研究所研究员施剑林团队提出的学术思想,旨在通过响应肿瘤部位的特异内场微环境或外源性激光、超声作用场,利用无毒/低毒纳米材料所引发的瘤内原位催化反应,高效实现肿瘤细胞的氧化损伤及细胞死亡。该催化肿瘤治疗方法不使用高毒性化疗药物,具有高效、特异性强、安全性高的特点。近日,该团队在纳米催化医学的肿瘤治疗领域取得进

2020-07-07