面向智能仿生感知系统的柔性人工突触研究取得进展
人工智能技术的发展为人机交互、仿生感知系统及智能机器人等领域带来革命性变化,同时也对复杂数据的处理和人机交互界面提出新要求。不同于目前基于软件系统和冯·诺依曼构架计算体系实现的神经网络,人脑运算方式具有高效率和低功耗的特点。因此,通过人工突触器件的制备,在硬件层面上模拟人脑的神经拟态器件,对构建新的计算系统具有重要意义。人工突触器件能够将传感器信号转变成类神
Nat Biotechnol:感知神经元激活与免疫系统的关系
在最近一项研究中,哈佛医学院/波士顿儿童医院的科学家开发了一种可植入技术,该技术可发现感觉神经元与免疫细胞之间的相互作用。
J Neurosci: 大脑是如何感知时间的?
在某些日子里,我们往往会感觉到时间流逝的很快,而在另外一些时候,我们又会感到度日如年。其中的原因是什么呢?最近一项发表在《Journal of Neuroscience》杂志上的文章似乎揭示了其中的答案:对时间敏感的神经元破损并歪曲了我们对时间的理解。
由结构域边界插入来调节基因组的空间折叠
北京时间2020年8月31日晚23时,美国费城儿童医院和宾夕法尼亚大学医学院的Gerd Blobel教授,其实验室的张帝(Di Zhang),和他们的合作者在Nature Genetics上发表了题为Alteration of genome folding via contact domain boundary insertion的论文,报道了通
研究揭示认知颜色空间形成的神经机制
8月26日,《神经元》杂志在线发表了题为《猕猴V1,V2和V4等级化的颜色处理机制》的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室王伟研究组与北京大学生命科学学院教授唐世明实验室合作完成。该研究利用内源性信号光学成像、双光子成像和电生理记录等手段,详细描绘
心脏如何影响你的感知和恐惧?
心跳和其他身体过程在塑造感知和认知方面发挥着令人惊讶的作用。大脑决定了我们是谁和我们在做什么。它主导着我们的感官,又指挥着我们的行动;它既是思想的创造者,又是记忆的守护者。但与此同时,大脑也根植于身体,二者之间的联系是双向的。举例来说,如果某些内部感受器显示身体饥饿,我们就会想要进食;如果感受器感觉到冷,我们就会穿得更暖和。然而,近几十年来的研究也表明,这些
Nature:肠道菌群所产生的神经递质或能调节宿主机体的感知行为
2020年7月15日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Nature上题为“A neurotransmitter produced by gut bacteria modulates host sensory behaviour”的研究报告中,来自布兰迪斯大学等机构的科学家们通过研究揭示了肠道菌群所产生的神经递质调节宿主感官行为的分子机制
Science:揭示哺乳动物如何感知和区分气味!
2020年7月7日讯 /生物谷BIOON /——科学家已经进一步解码了哺乳动物大脑如何感知气味,以及如何从数千种气味中区分一种气味。在老鼠的实验中,纽约大学格罗斯曼医学院的研究人员首次创造了一种被大脑嗅觉处理中心嗅球感知为气味的电子信号,尽管这种气味并不存在。由于气味模拟信号是人造的,研究人员可以操纵相关神经信号的时间和顺序,并确定哪些变化对老鼠准确识别"合
Cell:小胶质细胞通过吞噬胞外基质为新的突触形成让出空间
2020年7月12日讯/生物谷BIOON/---为了制造新的记忆,我们的脑细胞首先必须找到彼此。从神经元长长的有分支的触角末端伸出的小突起将这些神经元连接在一起,这样它们就可以交谈。这些细胞聊天的端口被称为突触,在整个大脑中发现了数万亿个突触,这让我们能够呈现新的知识。但是,科学家们仍在了解这些连接如何对新的经验和信息作出反应。如今,在一项新的研究中,来自美
Science:揭示梅斯纳小体感知轻微触觉机制
2020年6月27日讯/生物谷BIOON/---梅斯纳小体(Meissner corpuscle, 也称为触觉小体)是密集分布在哺乳动物无毛皮肤上的机械感觉末梢器官。梅斯纳小体的基本解剖结构和支配它的Aβ(较大的胞体直径和快速动作电位传导)机械感觉神经元已被广泛描述。然而,人们对梅斯纳小体以及支配它的Aβ机械感觉神经元在触觉相关行为、感觉运动能力和触觉感知方