打开APP

日本完成首例新冠肺炎患者活体肺移植手术

  日本京都大学医院当地时间4月8日称,为一位已持续治疗约3个月的新冠肺炎患者移植了由家属提供的肺,为新冠肺炎患者进行活体肺移植在世界上尚属首例。据京都大学医院介绍,接受肺移植的是一位居住在关西的女性患者。该患者去年年底感染新冠病毒,呼吸状态恶化,于关西的一家医院就医,治愈后核酸检查结果为阴性,但由于后遗症,其双肺都萎缩变硬,没有恢复的希

2021-04-09

Nat Commun: 广泛可培养微生物组揭示移植肺脏临床稳定与菌群生态平衡的联系

越来越多的证据表明,下呼吸道微生物群会影响肺部健康。然而,微生物群落组成与肺动态平衡之间的联系仍然难以捉摸。对此,在最近一项研究中,来自瑞士洛桑大学的Laurent P. Nicod团队结合了扩增子测序和细菌培养技术,表征了来自64个肺移植受体的234个支气管肺泡灌洗样品中的活细菌群落纵向特征,并建立起与病毒载量,宿主基因表达,肺功能和移植健康的联系。相关结

2021-04-13

分子植物科学卓越创新中心发现HYL1蛋白调控miRNA介导的翻译抑制过程

  中国科学院分子植物科学卓越创新中心/植物生理生态研究所研究员何玉科研究组在The Plant Cell上,发表了题为Cytoplasmic HYL1 modulates miRNA-mediated translational repression的研究论文。该研究组发现,HYL1蛋白除了介导microRNA (miRNA)的转录后调

2021-04-02

科研人员破解豆科植物在“恐龙大灭绝”时期幸存“密码”

  中国科学院昆明植物研究所22日发布消息称,该所科研人员参与的研究团队在豆科系统发育基因组学和根瘤菌固氮共生演化研究中取得新进展,破解豆科植物在“恐龙大灭绝”时期得以幸存并繁衍成为被子植物最成功的类群之一的“密码”。豆科是开花植物中最大的科之一,有约765属近20000种,贡献全球27%的作物产量。研究显示,豆科的祖先起源于大约距今67

2021-03-24

Nature重磅:你知道植物靠什么抵御严寒酷暑、害虫啃食吗?

  大家有没有思考过这个问题?人类和动物依赖自身的免疫系统维持机体稳态和健康,那植物靠什么撑过严寒酷暑、风吹日晒的呢?如何抵御害虫的啃食、微生物的侵染呢?没想到吧,答案是植物免疫系统。说实话,小编之前也是不知道的,那我们一起探索大自然的神奇吧!自然生态系统中,植物免疫系统对于植物生存和庄稼的产量至关重要。研究表明,植物有两级先天免疫系统,

2021-03-24

研究阐释植物激素介导的植物-病毒相互作用机制

  植物病毒是威胁植物健康及作物产量和品质的重要病原,给农业生产造成了严重损失。在植物寄主与病毒长期的共进化过程中,病毒能够利用多种策略改变宿主的细胞环境,从而更有利于自身复制和传播。为了应对病毒的侵染,植物也建立了多种防御机制。激素是一类内源性小分子物质,主要包括生长素(Auxin)、细胞分裂素(CKs)、赤霉素(GAs)、水杨酸(SA

2021-03-10

微塑料对植物根际微生物的影响研究获进展

  微塑料(Micro Plastic),一般指直径小于5毫米的塑料颗粒,是一种造成污染的新型载体。200年,微塑料的概念被提出,海洋、土壤等生态系统中微塑料污染及其环境风险逐渐受到关注。在农业生产过程中,由于农业地膜的使用,农田中微塑料广泛存在,对土壤理化性质、微生物群落及植物生长等均可能产生不同程度的影响。为了更好地探究微塑料在农作物

2021-03-18

植物miRNA调控网络研究取得进展

  北京大学生命科学学院李磊研究组在GPB杂志在线发表了题为“Structural and Functional Analyses of Hub MicroRNAs in an Integrated Gene Regulatory Network of Arabidopsis”的研究论文。本项研究主要构建解析了模式植物拟南芥中一个以miR

2021-03-10

JAHA:多摄入植物性饮食或有望帮助改善机体的心血管健康

2021年3月18日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Journal of the American Heart Association上的研究报告中,来自西安大略大学等机构的科学家们通过研究表示,摄入更多的植物性饮食或有望帮助改善机体的心血管健康。加拿大最新的食品指南鼓励加拿大人更多地选择来自植物性的蛋白质食物。研究者David Sp

2021-03-18

JCO:CD19-CAR-T细胞治疗后的异基因造血干细胞移植可阻止相当一部分B-ALL患者出现疾病复发

2021年3月30日讯/生物谷BIOON/---嵌合抗原受体(CAR)T细胞(CAR-T)免疫疗法将患者自身的T细胞进行基因改造,使之更有效地杀死癌症。靶向CD19的CAR-T细胞(下称CD19-CAR-T)在儿童和青少年(children and young adult, CAYA)B细胞急性淋巴细胞白血病(B-ALL)患者(下称CAYA B-ALL患者)中

2021-03-31