Journal of Cell Science:研究发现切断癌症发展途径的“关键点”
昆士兰大学的研究人员发现,切断乳腺癌细胞产生的蛋白质可以阻止癌症的进展。来自UQ药学与研究所研究所的Iman Azimi博士说,当乳腺癌细胞停止生产称为TRPC1的蛋白质时,乳腺癌进展中重要的一些途径被停用。Azimi医生说:“我们将TRPC1鉴定为几种途径的调节因子,当通过缺氧激活时,这些途径对乳腺癌进展至关重要。“随着乳腺癌的发展,氧气的供应量会下降,这就是所谓的缺氧。
皮肤创口贴将成为流感疫苗给药新途径
2017年7月3日/生物谷BIOON/---未来,流感疫苗的可能会通过一个小而多刺的创口贴给药。近日,发表在医学杂志《柳叶刀》上的一项I期临床试验结果表明,利用可降解的微型流感创口贴给药具有良好的耐受性和安全性。 相较于传统的针刺注射流感疫苗,将流感疫苗涂抹于具有100个微型针头的创口贴上,再将创口贴压在手臂通过100个微型针头给药的方式极大程度地减轻了接种疫苗的痛苦。 这次试
研究揭示炎性免疫致抑郁症的新机制和治疗新途径
抑郁症是现代社会严重危害人类健康的身心疾病。关于抑郁症发病机理的假说有多种,目前具有潜力的是细胞因子假说或称炎性免疫假说。该假说认为抑郁症是一种心理-神经-免疫紊乱性疾病,机体的免疫系统在抑郁症中具有重要作用。研究组在以往研究中,证明中枢炎性免疫导致的抑郁行为与慢性应激所导致的抑郁行为类同,海马炎性细胞因子升高是两个抑郁模型的共同特征。这些研究发现表明炎性免疫是致抑郁症的关键因素。但脑内炎性免疫致
浙大徐平龙组揭示蛋白酪氨酸磷酸化修饰在抗病毒天然免疫中的重要功能与机制
抗病毒天然免疫通路的激活,传统上认识是由蛋白泛素化和蛋白丝苏氨酸磷酸化所介导,对于蛋白酪氨酸磷酸化修饰的作用与生理功能,未有深入探索和认知。6月14日,浙江大学生命科学研究院徐平龙教授课题组在Cell Host & Microbe杂志上发表了题为“Lck/Hck/Fgr-mediated tyrosine phosphorylation negatively regulates TBK1
《自然-方法》:数据驱动蛋白质设计促成发明细胞内烟酰胺腺嘌呤二核苷酸磷酸探针
蛋白质设计研究如何通过指定或改变氨基酸序列来控制、改变蛋白质结构和功能。蛋白质是生命功能最主要的执行者,研究者能够通过遗传编码让细胞自动合成表达人工蛋白,表征细胞状态,调控细胞功能。因此,有效、可靠的蛋白质设计能在生命科学不同领域发挥重要作用,特别是在新兴的合成生物学方向,可成为重要支撑技术。6月5日,《自然-方法》杂志在线发表了华东理工大学教授杨弋、研究员赵玉政课题组与中国科学技术大学教授刘海燕
长期服用双磷酸盐类防治骨质疏松性骨折的弊端
骨质疏松症是一种导致骨骼变薄,骨密度降低和骨骼愈来愈脆弱的疾病。这使人骨骼骨折的风险更高。随着年龄的增长,疾病的风险也会增加。事实上,50岁以上的妇女容易因骨质疏松而遭受骨折。到2020年,估计有6100万美国成年人的骨矿物质密度较低。称为“双膦酸盐”的药物有时用于治疗骨质疏松症。这些药物增加骨矿物质密度,这加强了骨骼,并被认为使它们不太可能破裂。研究表明,当骨质疏松的妇女服用这些药物1至4年时,
遗传发育所植物NAD补救合成途径解析和进化研究获进展
NAD (尼克酰胺腺嘌呤二核苷酸) 作为电子传递载体(辅酶)参与众多的氧化还原反应而为广大研究人员所熟知。在植物NAD补救合成途径中(Preiss-Handler途径),特异性存在尼克酸(nicotinate,NA)和多种NA的衍生物(糖基化,甲基化等),但迄今为止,关于NA衍生物在植物代谢中的分子机制及其生理功能尚未有报道。中国科学院遗传与发育生物学研究所王国栋研究组前期的研究表明NA的O-位糖
PNAS:抗真菌感染新策略:首次发现雷帕霉素靶蛋白TOR感知磷酸
编者按:雷帕霉素靶蛋白TOR(Target of Rapamycin),是一种从酵母到哺乳动物高度保守的蛋白激酶。TOR是细胞感应外界营养水平进而调节生长和衰老的中心调控子。TOR被发现可以调控核糖体发生、翻译起始、代谢、应激反应、自噬等等信号通路。从酵母中的TOR到哺乳动物中的mTOR,之前的研究大都集中于氨基酸和葡萄糖对TOR活性的调控作用。5月31日,来自哈佛医学院 Julia R. K h
遗传发育所在细菌中实现植物泛素化途径的重建
图:植物泛素化在细菌中的重建,以 ABI3 及其对应的 E3 泛素连接酶 AIP2 为例。a. 将编码 ABI3(底物),E1,AIP2(E3),E2 和 Ub(泛素单体)的基因构建到三个带有不同选择性标记的且相容的原核表达载体中;b. 利用不同的相应标签抗体对这五个蛋白在泛素化中的状态进行检测。泛素化是一种重要的真核生物蛋白质翻译后修饰方式,它决定了被修饰蛋白的命运。泛素化的过程分为三步系列的酶
切断癌症转移途径,关键在哪里?
在许多肿瘤中占优势的低氧浓度增加了其转移到其他组织的倾向。 Heiko Hermeking教授领导的慕尼黑路德维希 - 马克西米利安大学(LMU)的研究人员已经发现了将这两种现象联系起来的分子机制。许多积极生长的肿瘤血液供应不足,这限制了肿瘤内可用的氧气浓度,这种状况称为缺氧。肿瘤缺氧具有几个显着的后果:相对缺氧部分是由于这种实体肿瘤对辐射和化疗具有相对的抵抗力,同时也促进了其他组织中