打开APP

Scientific Reports:DNA纳米材料研究新进展

DNA组装纳米材料定向引导荧光共振能量传递 5月24日,Nature集团期刊《科学报告》(Scientific Reports)刊发了中国科学院深圳先进技术研究院生物医药与技术研究所粟武研究员科研团队与英国以及美国同行合作,在DNA与其序列特异性识别分子自组装纳米材料方面的研究成果,论文题目为《吡咯-咪唑聚酰胺控制能量在三叉DNA结构中的传递方向》。

2013-06-05

Nat Biotechnol:发现抵抗细菌感染的材料

2012年8月14日 讯 /生物谷BIOON/ --细菌形成被称作生物膜的群落从而影响很多经常被使用的医学设备,包括尿管和静脉导管。这种“数量优势”的方法保护它们免受体内自然防御机制和抗生素的攻击。 英国诺丁汉大学研究人员发现当把新的材料加到医学设备表面时,这些材料排斥细菌从而阻止它们形成生物膜。他们将他们的研究结果发表在Nature Biotechnology期刊上。

2012-11-18

Nat Med:发现HIV病毒独特特征有助于产生强大的抗体

2012年10月24日 讯 /生物谷BIOON/ --在被HIV感染后,某些病人产生非常强大的抗体反应。但是,这种现象是如何发生的一直是个未知数。 南非金山大学(Wits University)研究人员在一项发表在Nature Medicine期刊上的艾滋病研究中发挥着至关重要的作用。

2012-11-19

蚕丝的性能和生物材料学研究--专访高分子材料科学家邵正中教授

蚕丝不仅是纺织丝绸的纤维原料,同时也是一种极好的生物材料。近年来,蚕丝纤维性能的改造及丝蛋白在生物医学领域的应用研究受到了越来越多的关注。 6月29日下午,复旦大学江湾校区的先进材料实验室里,生物谷通讯员就蚕丝以及丝蛋白在生物材料学领域的研究概况和生物医学上的应用前景对邵正中教授进行了访谈。

2013-01-30

Antimicrob Agents Ch:大肠杆菌抗生素耐药的独特机制

2013年3月20日 讯 /生物谷BIOON/ --在全球范围内我们都面临日益严重的抗生素耐药性,近日,Tufts大学医学院的微生物学家已经确定了大肠杆菌对碳青霉烯类抗生素耐药的耐药机制。碳青霉烯类抗生素是一类用于治疗致病细菌其中包括大肠杆菌和肺炎克雷伯菌所导致疾病的抗生素,碳青霉烯类抗生素通常作为严重疾病甚至病人快死亡时才最后使用的抗生素。

2013-03-27

Science:研究者揭示哺乳动物独特的耳朵

一种针对哺乳动物耳朵的新观点可帮助解释为什么人类更容易发生耳部感染和听力丧失。研究人员发现,哺乳动物的耳部发育涉及到上皮细胞的破裂并且该细胞会被一种完全不同的细胞类型所取代。这些发现表明这一过程可能是哺乳动物所特有的。 近日,刊登在国际杂志Science上的一篇研究报告中,研究者Hannah Thompson 和Abigail Tucker用转基因小鼠来追踪耳内的这2种不同类型细胞的发育。

2013-03-24

Small:抗微生物的纳米银材料或可引发芽孢杆菌对其产生抗性

2013年5月13日 讯 /生物谷BIOON/ --近日,刊登在国际杂志Small上的一篇研究报告中,来自新南威尔士大学(University of New South Wales)的研究者通过研究揭示了,微生物如何对纳米银颗粒的消毒特性产生反应,这种银纳米颗粒经常用于消费者的某些产品、同时也应用于医疗和环境等领域。

2013-05-13

Biomacromolecules:使用噬菌体来杀灭医用植入材料表面的耐药细菌

2013年5月9日 讯 /生物谷BIOON/ --病毒可以感染并杀灭细菌,在抗生素被发明之前的岁月里,其是抑制细菌感染以及细菌生物被膜形成最好的工具。近日,刊登在国际杂志Biomacromolecules上的一篇研究报告中,来自南密西西比大学(University of southern mississippi)的研究者揭示了细菌噬菌体在抑制以及治疗细菌感染上的重要作用。

2013-05-09

Nat Commun:特殊材料加速干细胞生长

2013年1月9日 讯 /生物谷BIOON/ --近日,刊登在国际杂志Nature Communications上的一篇研究报告中,来自爱丁堡大学的研究者表示,他们可以通过一种新型的产生干细胞的方法来提高疾病的药物筛选速率以及新型疗法的开发速度,这对于众多疾病,比如帕金森疾病或者亨廷顿氏症的治疗无疑是一大突破。

2013-01-10

Biomaterials:特殊生物材料或可修复中枢神经系统损伤

2013年1月31日 讯 /生物谷BIOON/ --尽管研究者一直在探索如何用组织工程技术来修复中枢神经系统(CNS)损伤,但是由于神经干细胞(NSC)所扮演的关键和复杂的角色致使修复神经损伤的技术依然停滞不前。干细胞自胚胎发育产生新的细胞后就一直存留在机体中,其控制着机体许多关键的任务,比如机体生长加速、神经细胞分化必要的物理和生化代谢等。

2013-01-31