打开APP

Nat Biotechnol:将CRISPR/Cas9与纳米孔测序相结合实现靶向测序

2020年3月8日讯/生物谷BIOON/---为了寻找对人类基因组进行测序并读取DNA关键变化的新方法,来自美国约翰霍普金斯大学医学院的研究人员在一项新的研究中成功地使用了基因切割工具CRISPR在较长的肿瘤基因周围进行了DNA切割,以用于收集序列信息。他们在来自人类乳腺癌细胞和组织的基因组中进行概念验证实验。相关研究结果近期发表在Nature Biotec

2020-03-08

科学家鉴别出特殊药物片段 或有望帮助开发新型抗癌药物

2020年2月29日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Scientific Reports上的研究报告中,来自伦敦癌症研究所等机构的科学家们通过研究发现了一种新型的药物片段,其或能帮助改善研究人员对关键癌症蛋白功能的理解,并开发出新型药物疗法;研究者表示,这种药物片段或许能作为未来药物的潜在基本元件,他们希望能利用对该药物片段的理解来开

2020-02-29

安捷伦基因组学系列讲座:安捷伦最新二代测序建库方案,攻克 FFPE、液态活检等复杂样本的难题答疑

随着样本量增加,高通量测序平台,如 NovaSeq 被越来越多的采用,而标签跳跃问题、样本标签数目限制混样数量等问题也随之而来。而随着精准医疗的发展,肿瘤样本,特别是FFPE样本、液态活检样本的测序需求越来越大,但建库环节、PCR环节、测序本身的错误率,以及前面提到的标签跳跃问题都限制了低频变异的检出,给测序服务与产品的开发带来难题。

2020-03-11

安捷伦基因组学系列讲座:安捷伦最新二代测序建库方案,攻克 FFPE、液态活检等复杂样本的难题

随着样本量增加,高通量测序平台,如 NovaSeq 被越来越多的采用,而标签跳跃问题、样本标签数目限制混样数量等问题也随之而来。而随着精准医疗的发展,肿瘤样本,特别是FFPE样本、液态活检样本的测序需求越来越大,但建库环节、PCR环节、测序本身的错误率,以及前面提到的标签跳跃问题都限制了低频变异的检出,给测序服务与产品的开发带来难题。

2020-02-21

中信湘雅联合真迈生物首次发表基于国产单分子测序平台的微量细胞研究成果

近日,由中信湘雅生殖与遗传专科医院(以下简称“中信湘雅”)林戈课题组和深圳市真迈生物科技有限公司(以下简称“真迈生物”)联合组成的研究团队在预印本服务网站BioRxiv在线发表了题为Accurate CNV identification from only a few cells with low GC bias in a single-molecule s

2020-02-17

我国科学家开发出转录组快速建库新方法 有望助力新型冠状病毒测序

北京大学与清华大学联合课题组近期在国际权威学术期刊《美国科学院院刊》发表论文,称开发出了名为“SHERRY”的转录组测序快速建库新方法。研究团队表示,这种方法大大简化了建库过程,不仅可用于高质量的单细胞转录组测序,对包括新型冠状病毒等样本的测序质量和速度也有望显着提升。核糖核酸(RNA)是存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。目前,RNA测序技

2020-02-04

Nat Commun:干细胞、CRISPR以及基因测序共同帮助建立脑癌模型

近日,加利福尼亚大学圣地亚哥分校医学院的研究人员使用基因工程化的人类多能干细胞,创建了一种新型的癌症模型,用于体内研究胶质母细胞瘤如何随时间发展和变化。

2020-01-31

稀有样本单细胞测序技术取得进展

近日,中国科学院深圳先进技术研究院医工所微纳系统与仿生医学研究中心研究员陈艳和南加州大学教授钟江帆合作,在针对稀有细胞样本的单细胞测序技术方面取得新进展。相关研究成果以Improving single-cell transcriptome sequencing efficiency with a microfluidic phase-switch devic

2019-12-08

安捷伦基因组学系列讲座 —— 超长片段 DNA 样本分离与质控的终极解决方案

脉冲场电泳可以分离几十 Kb 的超长片段 DNA,然而传统的脉冲场电泳动辄就要运行过夜,实验结果还受诸多外界因素影响。当样本量很大,时间是个关键因素时,该如何解决?本次讲座,我们将向您系统阐述脉冲场电泳的基本原理,您将了解到最先进的十倍于传统脉冲场电泳速度的 Femto Pulse 全自动脉冲场电泳系统,以及 Femto Pulse 系统如何解决三代测序样本质量控制的问题。

2019-12-09

Nat Biotechnol:DNA重复片段——基因组中的“黑物质”

2019年11月25日 讯 /生物谷BIOON/ -- 基因组的大部分区域由重复片段组成。这些“ DNA重复序列”在错误位置的扩增可能会产生严重后果。然而,DNA重复序列的扩增非常难以分析。柏林马克斯·普朗克分子遗传学研究所的研究人员最近开发的一种方法可以详细查看这些以前无法进入的基因组区域。它结合了纳米孔测序,干细胞和CRISPR-Cas技术。该方法可以改善未来各种先天性疾病和癌症的诊断。&nb

2019-11-25