新的靶向药物可治疗脆性X染色体综合征和自闭症
美国加州大学戴维斯分校 MIND 研究所和芝加哥Rush大学医学中心的科研人员的一项研究发现,一种针对脆性X染色体综合征核心症状的处于研究阶段的化合物可以有效解决该病的社会退缩以及特有的挑战性行为,这让它成为了针对脆性X染色体综合征的首个此类发现,同时有可能成为自闭症谱系障碍的首个此类发现。 这项发现是对患X染色体脆性综合征的成年和儿童受试者的一项临床试验的结果。
NEJM:一种治疗常染色体显性多囊肾病的潜在疗法
2012年11月6日 讯 /生物谷BIOON/ --近日,来自梅奥诊所的研究者通过研究发现,一种新型的药物疗法在治疗常染色体显性多囊肾病(ADPKD)上表现出较好的作用,这种药物名为托伐普坦,在长达三年的研究中,其可以有效减缓肾脏包囊的生长速度。相关研究刊登于国际杂志NEJM上。 通过多中心的研究表明,药物托伐普坦相比安慰剂,在治疗期间可以明显降低ADPKD患者肾脏包囊尺寸将近50%。
ACS Chem Biol & JACS:开发出可以逆转脆性X染色体综合征相关疾病的新型分子
2012年9月5日 讯 /生物谷BIOON/ --近日,来自斯克利普斯研究所佛罗里达分校的研究者开发设计出了一种新型化合物,其可以作为一种新型潜在的疗法来治疗和脆性X染色体综合征(fragile X syndrome)相关的某些疾病。脆性X染色体综合征是一种遗传性疾病,可以引发智力发育迟缓、不育、记忆力减退等病症。
Nature:发现介导X染色体失活的新RNA
在雌性哺乳动物中,两条X染色体需要随机失活一条,以确保雌雄个体有同等剂量的X染色体转录产物。以往的研究中,研究者发现非编码RNAXist介导真哺乳亚纲动物X染色体失活,但在后兽亚纲动物中不存在Xist。因此后兽亚纲动物的X染色体失活机制是什么成为困扰科学界已久的谜题。 本文中,研究者利用短尾猊作为研究对象,发现Rsx (RNA-on-the-silent X) 介导X染色体失活。
AJMGPB :脆性X染色体突变的流行将带来较大的健康风险
近日,刊登在国际著名杂志The American Journal of Medical Genetics上的一篇研究报告中,来自威斯康星大学的研究者报告了一系列的遗传氨基酸的重复,而且这种重复可以通过世代来积累,并且最终引发单一基因的突变引起脆性X染色体的产生。而且研究发现现在这在美国人中发生的频率高于以前。
Cell:揭示组蛋白H3K9的分级甲基化可以在核被膜处对染色体臂进行定位
2012年9月2日 讯 /生物谷BIOON/ --近日,来自弗雷德里希米歇尔生物医学研究所的科学家阐明了组蛋白修饰可以导致细胞核周围静止基因的沉默,相关研究成果刊登在了近日的国际杂志Cell上。文中,研究者揭示了至少在两种水平上,组蛋白H3 9位赖氨酸的甲基化可以引发异染色质定位在核被膜处。
PLoS ONE:成都生物所发现棘腹蛙罕见染色体易位多态现象
一般而言,易位的非同源染色体在减数分裂中形成异常的“四价体”配对,存在三种分离方式,可形成6种配子,由此在后代中出现多种核型个体。而其中不平衡配子由于遗传上的缺失和重复引起不育或育性极低,导致后代种群繁殖力降低,因而易位多态在自然群体中极难形成,在脊椎动物中更是罕见。两栖类自然种群中,因易位在种群中引起的核型多态现象未见报道。迄今,对于脊椎动物包括两栖类中易位所引起的细胞学及遗传学效应知之甚少。
PLoS One:揭示焦虑症、过早衰老与染色体端粒的缩短直接相关
2012年8月13日 讯 /生物谷BIOON/ --焦虑症和过早衰老相关吗?近日来自布莱根妇女医院(BWH)的研究者揭示了,常见形式的焦虑症比如我们常见的恐惧性焦虑,在中年和老年妇女中,这种焦虑症和端粒的缩短有关。这项研究揭示了恐惧性焦虑或许是加速衰老的风险因子。 相关研究成果刊登在了近日的国际杂志PLoS One上。
PNAS:科学家们揭示性染色体早期进化的分子机制
2012年8月12日 讯 /生物谷BIOON/ --8月6日,刊登在国际著名杂志PNAS上的两篇研究报告通过重点研究番木瓜(papaya)来揭示性染色体的进化。研究者表示,番木瓜的性染色体在短期的进化过程中发生了剧烈的改变,人类性染色体进化了超过1亿6千万年,而番木瓜则只进化了700万年。研究者的其中一项研究对比了番木瓜的性染色体和常染色体,另一项研究则对比了X染色体和Y染色体的差别。
Cell:揭示将端粒酶运送至染色体末端的机制
干细胞是特别的。它们存在于肌肉、皮肤、器官和骨组织之中,并且能够等待几年或几十年的时间,直到它们被激活来替换受损或丢失的组织。它们长寿的一种秘密在于一种被称作端粒酶的酶,这种酶能够让限制其他细胞寿命的分子时钟(molecular clock)不停歇地滴答运转。这种细胞青春之泉阻止我们的染色体渐近性缩短。但是端粒酶的存在也是一把双刃剑:确保干细胞寿命长的端粒酶活性也能够让癌细胞长时间地分裂。