打开APP

:研究人员制成植物人工染色体

日本冈山大学资源植物研究所教授村田稔率领的研究小组25日宣布,他们成功在植物细胞内人工制造出了带有遗传信息的染色体。这一成果将有助于开发新的作物品种。 研究小组使用拟南芥,利用“自顶向下分析法”,通过操控细胞内原有的染色体,并进行改编,制作出了比通常染色体要小的环状人工染色体。即使是自花授粉的种子,也有40%以上继承了这种人工染色体。

2013-04-27

GENE DEV:钝性末端端粒亦可保护染色体末端

7月18日,GENE DEV杂志在线报道,在被子植物中科学家发现不同于以往认识的钝性末端端粒保护结构。 单链端粒DNA突出结构,被认为是进化上保守的基本结构元件,发挥保护染色体末端的重要功能。以前人们认为,此DNA突出结构在端粒部位的形成,由前导链机制复制导致。此过程涉及一种机制尚不清楚的DNA复制后钝性末端处理。

2012-11-18

:新发现挑战经典染色体组装模型

染色体(左)是紧密浓缩的和不规则折叠的核小体纤维组成的。 根据一项最新的研究,在细胞分裂期间,人基因组中的DNA被组装成不规则折叠的纤维。 DNA缠绕在组蛋白周围形成核小体纤维,接着被称作集缩素蛋白(condensin)的大型蛋白复合体将核小体纤维紧密压缩成染色体。之前的很多研究提示着核小体被组装成规则性的直径为30纳米的纤维结构,从而使得人们提出经典的染色体组装模型。

2012-11-18

Science:科学家揭示果蝇染色体的进化追踪过程

果蝇常被用来进行遗传研究,因为其寿命比较短,而且在实验室可以很容易繁殖,其突变体可以被广泛使用。目前果蝇有1500中已知的种。近日一项刊登在Science上的研究追踪了果蝇一对性染色体的进化历程,这对染色体大约在100万年之前出现。

2012-11-18

Plant Journal:AtRFC1能通过影响同源染色体和姐妹染色单体的均等分离

来自武汉大学生命科学学院,杂交水稻国家重点实验室的研究人员发表了题为“Replication factor C1 (RFC1) is required for double-strandbreak repair during meiotic homologous recombination inArabidopsis”的文章...

2013-01-05

PNAS:恢复血脑屏障的完整性

一项研究发现,恢复血脑屏障的完整性可能有助于减缓并逆转诸如多发性硬化、阿兹海默病和帕金森病的发展。几种退行性脑病能削弱血脑屏障——这是把血流和中枢神经系统的液体分隔开来的人体天然机制——因此也就让不适宜的分子进入了大脑,产生了灾难性的后果。Egle Solito及其同事确定了称为Annexin A1 (ANXA1)的基因产物调控着大脑内皮细胞的这种屏障的完整性,该基因就是在大脑内皮细胞表达的。

2013-01-04

Plant Cell:植物细胞核基因组完整性的维持

近日,上海生科院植生生态所黄海课题组科研人员与英国剑桥大学及John Innes Centre的Janneke Balk博士研究组合作在国际植物科学领域权威期刊《The Plant Cell》发表了题为“The DUF59 family gene AE7 acts in the cytosolic iron-sulfur cluster assembly pathway to maintain n

2013-01-04

PNAS:染色体分离的关键

着丝粒位于染色体上在细胞分裂过程中具有重要作用,日前纽约大学的生物学家揭开了关键蛋白被装入着丝粒的详细机制,有助于人们进一步了解基因组复制并分析染色体数异常背后的潜在因素。这项发现发表在最近一期的美国国家科学院院刊PNAS杂志上。 着丝粒负责介导染色体分离以确保子细胞获得基因组的完整拷贝,这一过程遭到破坏可能导致染色体数异常,而这种异常在90%的癌症中都明显存在。

2013-01-02

Nat Struct & Mol Biol:科学家揭示改变染色体端粒长度影响细胞衰老的分子机制

2013年9月12日 讯 /生物谷BIOON/ --近日,来自海德堡大学的研究者通过研究发生在染色质末端的生物过程,他们解开了细胞衰老的重要分子机制,研究者将研究焦点集中在染色体末端的长度上,即一种称为端粒的结构上,相

2013-09-13

Nature突破发现:X染色体对精子的重要作用

一项最新研究通过详细的基因序列分析表明,一直以来被认为是女性染色体的X染色体,其大部分组成成分在精子的生成过程中扮演了重要的特殊作用。 这一令人感到惊讶的研究新发现,公布在Nature出版社旗下Nature Genetics杂志上,由Whitehead研究所的研究人员完成。

2013-07-24