打开APP

植物激素茉莉酸的信号传导机理研究取得进展

 茉莉酸(Jasmonate,JA)激素是植物体内一类非常重要的脂类生长调节物质,参与调控植物某些重要的生长发育过程以及对环境因子的响应,如叶片表皮毛的起始、花青素的积累及抗冻害反应等。根毛是根表皮细胞特化形成的一种单细胞管状突出物,它们能有效增加根的表面积,促进植物对水分和养分的吸收,从而在植物适应环境的过程中发挥重要作用。根毛的生长发育过程受到

2020-02-19

研究发现血管老化引发糖尿病的机理

 日本研究人员近日在英国《自然·通讯》杂志上发表论文说,他们发现血管老化会导致体内脂肪细胞吸收葡萄糖的功能下降,进而导致糖尿病风险升高。日本神户药科大学等机构研究人员制备了3种不同的血管内皮细胞,一种是正常衰老的细胞,第二种是人为使其老化的细胞,另一种是年轻细胞。这3种细胞分泌的物质被分别混入培养液,用来培养脂肪细胞。结果显示,在混有前两种细胞分泌

2020-02-13

德研究揭示疟原虫对青蒿素的耐药性机理

青蒿素是从复合花序植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯的一种无色针状晶体,其分子式为C15H22O5,由中国药学家屠呦呦在1971年发现。青蒿素是继乙氨嘧啶、氯喹、伯喹之后最有效的抗疟特效药,尤其是对于脑型疟疾和抗氯喹疟疾,具有速效和低毒的特点,曾被世界卫生组织称做是“世界上唯一有效的疟疾治疗药物”。青蒿素是现今治疗疟疾的重要药物,但有些疟原虫逐渐对

2020-01-07

研究揭示钠钾ATP酶抑制剂抗日本乙型脑炎病毒感染的作用机理

近日,国际学术期刊Antimicrobial Agents and Chemotherapy(《抗微生物制剂与化学治疗》)在线发表了中国科学院武汉病毒研究所/生物安全大科学研究中心肖庚富、王薇团队的最新研究成果,论文题为Screening of Natural Extracts for Inhibitors against Japanese Encephal

2019-12-28

超声神经调控的分子机理研究获进展

  近日,中国科学院深圳先进技术研究院超声神经调控团队与香港理工大学教授孙雷课题组合作,在离体细胞实验中证明了机械敏感通道Piezo1在超声神经调控中的重要作用。他们发现低频低能量超声可以打开Piezo1引起钙离子内流,从而触发下游信号通路激活。研究成果以The mechanosensitive ion channel Piezo1 si

2019-12-20

Nature:从结构上揭示一种新型基因编辑复合物的作用机理

2019年12月24日讯/生物谷BIOON/---在一项新的研究中,来自美国哥伦比亚大学的研究人员捕捉到一种可以对现有的基于CRISPR的工具进行改进的新型基因编辑工具的首批结构图片。他们在霍乱弧菌中发现一种独特的“跳跃基因”并且这种跳跃基因可以在基因组中插入较大的基因负荷(genetic payload,即DNA序列)而不引入DNA断裂,基于此,他们开发出

2019-12-24

揭秘压力加速细胞染色体乃至机体衰老的分子机理

2019年12月20日 讯 /生物谷BIOON/ --机体衰老对于所有生物来讲都是不可逆的,尽管我们目前仍然并不知道机体为何会逐渐衰老,但如今我们已经开始了解衰老是如何发生的。日前,一项刊登在国际杂志Ecology Letters上的研究报告汇总,研究人员从DNA的层面上鉴别出了影响机体衰老过程最重要的一方面的因素,同时研究者揭示了压力是如何引发染色体的生物

2019-12-19

研究揭示蓝藻CO2浓缩机制中HCO3-转运蛋白BicA的结构与机理

  11月11日,Nature Plants在线发表了中国科学院分子植物科学卓越创新中心张鹏研究组题为Structural mechanism of the active bicarbonate transporter from cyanobacteria 的研究论文。该研究解析了蓝藻CO2浓缩机制中SLC26家族HCO3-转运蛋白BicA的三维结构,揭示了其跨膜转运HCO3-

2019-11-14

植物DNA去甲基化的机理和功能

10月19日,Journal of Integrative Plant Biology(JIPB)在线发表了中国科学院分子植物科学卓越创新中心上海植物逆境生物学研究中心郎曌博研究组题为The mechanism and function of active DNA demethylation in plants 的综述论文。这篇文章概述了最新的植物中DNA去甲基化的调控机理,以及其在模式植物和作物

2019-11-03

研究揭示Cas9切割DNA及其被AcrIIC3抑制的分子机理

CRISPR/Cas系统是广泛存在于细菌和古菌中抵抗病毒、质粒等外源核酸的获得性免疫系统。II型的Cas9在RNA的介导下可以特异性识别、切割dsDNA,具有可编辑性,因此被广泛用作基因编辑工具。由于其重要性,Cas9被系统地研究,大量的文献报道了Cas9的原子分辨率结构、单分子测量结果、分子动力学模拟计算结果,阐明了Cas9切割DNA的分子机理。但是,之前发表的Cas9结构中,切割目的DNA的H

2019-11-03