打开APP

Science和Cell双重磅:激光全息图刺激小鼠的脑细胞探测感知和幻觉的根源

2019年8月24日讯 /生物谷BIOON /——激发记忆、感觉或运动需要多少神经元?神经科学家们一直在努力用相对粗糙的方法来回答这个问题,这种方法使他们无法激活单独选择的脑细胞。然而,最近有两个研究小组采用了光遗传学--一种利用光刺激神经元的技术--来精确地唤醒老鼠视觉皮层中的特定细胞。他们发现,仅仅对几个神经元进行电击,就能触发与向动物展示视觉模式相同的大脑活动,并能让它们做出类似于看到这种模

2019-08-24

Science:抗感染蛋白也能感知非感染细胞中的蛋白质折叠错误

2019年8月8日讯 /生物谷BIOON /——多伦多大学(university of toronto)的研究人员发现了宿主细胞对抗细菌感染的免疫机制,同时发现对这一过程至关重要的一种蛋白质能够感知并对所有哺乳动物细胞中错误折叠的蛋白质做出反应,相关研究成果于近日发表在《Science》上。这种蛋白质被称为血红素调控抑制因子或HRI,研究人员表明,在细菌感染过程中,它会触发并协调形成更大复合物的其

2019-08-08

研究发现线粒体“黑洞”吞噬与否的抉择规律

 中国科学院广州生物医药与健康研究院研究员刘兴国课题组研究发现线粒体“黑洞”吞噬与否的抉择规律,提出了一种全新的依赖于细胞器拓扑结构的线粒体质量控制的选择策略。相关研究6月25日以《饥饿条件下拓扑结构依赖的线粒体质量控制》为题在线发表于《自噬》(Autophagy)。据介绍,线粒体,顾名思义,呈现线状或粒状,是高度动态的细胞器。线粒体自噬在发育、应激和病理过程中发挥着至关重要的作用,线粒

2019-07-02

我国科学家揭示听觉皮层编码听觉认知的新机制

  “你在哪里呢?”当你接到这样一个电话时,即使环境嘈杂、信号不好,你仍然可以不费吹灰之力就听出电话那头的声音是熟人还是陌生人。每天,我们的大脑接收来自客观世界的感觉信息纷繁复杂,大脑对外来刺激进行分类后,我们才有了感知判断。那么大脑是如何开展这项工作的呢?中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室徐宁龙研究员团队

2019-07-09

PNAS:研究人员揭示压力感知蛋白在肺水肿中的关键作用

2019年6月14日讯 /生物谷BIOON /——芝加哥伊利诺伊大学(UIC)的研究人员首次描述了一个独特的压敏蛋白在肺水肿中的作用,肺水肿是一种慢性肺血管压力高导致液体从血液进入肺部的肺泡中的疾病。这项研究发表在《PNAS》上,该研究表明抑制这种蛋白质的活性可能是治疗肺水肿的一种新方法。图片来源:http://cn.bing.com肺水肿有多种原因,包括心力衰竭。某些类型的心力衰竭--心脏长期无

2019-06-14

Science子刊:揭示人体细胞如何感知癌细胞!

2019年6月10日讯 /生物谷BIOON /——关于细胞在面临癌变危险时如何向身体发出警报的新见解,可能为寻找治疗方法打开新的大门。当免疫细胞处于压力或危险中时,它们可以发出警告信号。而科学家发现,正常细胞也具有免疫细胞的这一特征。这种机制是人体去除老化细胞系统的一部分,是衰老过程的自然组成部分,被称为衰老。图片来源:Science Advances研究人员表示,该系统还可以帮助身体更快地检测出

2019-06-10

感知抉择皮层环路机制因果性研究获进展

4月29日,《自然-神经科学》期刊(Nature Neuroscience)在线发表了题为《后顶叶皮层在信息归类感知抉择中的因果性作用》的研究论文,该研究由中国科学院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家重点实验室徐宁龙研究组完成。该研究从一个创新的角度解答了一个具有广泛争议的科学问题:后顶叶皮层及相关神经环路在抉择过程中发挥什么作用。后顶叶皮层(Posterior Parie

2019-05-04

“傲娇”的后顶叶皮层脑区: 只爱新刺激,不屑参与低级抉择

 走在路上,我们的大脑每时每刻都在进行着大大小小的抉择:分岔路口向左还是向右?怎么避开迎面而来的汽车?如何根据标识判断男女洗手间?根据以往的研究,这些抉择行为都与大脑后侧、顶部皮层中的神经元活动高度相关。可最近的多个研究结果发现,抑制后顶叶皮层的神经元并不影响动物在抉择行为中的表现,这在神经科学领域引发了广泛争议。近日,中国科学院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家

2019-05-09

Science:大脑岛状皮质区域负责疼痛感知与疼痛学习过程

2019年5月17日 讯 /生物谷BIOON/ --急性疼痛,例如用尖锐的物体撞击你的腿,会产生一种突然的,令人不快的感觉。通过这种方式,我们从痛苦的经历中学习,以避免未来的有害情况。这被称为“威胁学习”,帮助动物和人类生存。但是大脑的哪一部分参与了这种学习过程了呢?我们已经知道一段时间叫做杏仁核的脑区对于“威胁学习”非常重要。但是现在,来自EPFL的Ralf Schneggenburger实验室

2019-05-18

研究揭示哺乳动物温度感知元件TRPV1的热失活分子机制

TRPV1是哺乳动物重要的温度感知元件,可以被40摄氏度以上的高温激活。然而TRPV1高温激活后会迅速发生高温介导的失活。由于TRPV1热失活和热激活两个变构过程紧密偶联,难以有效对TRPV1热失活的分子机制进行研究,进而无从得知其在哺乳动物生命活动中的功能。为揭示哺乳动物TRPV1热失活的分子机制及生物学意义,需要获得一种仅发生热激活而不发生热失活的TRPV1,并以此作为模板开展分子水平和动物水

2019-05-18