微流控技术的生物学应用
微流控技术为在推动生物学众多领域的强大工具做出了巨大贡献。随着用于微通道中流体的注射、混合、泵送和存储的新器件和工艺的发展,近年来微流控系统在化学和生物化学中的应用越来越广泛。尽管微流控技术近年来取得了一定进展,但在样品引入和处理一定体积范围的流体方面仍然存在一些挑战。纳米技术的最新发展则有助于提升微流控技术。微系统已经彻底改变了可用于分析复杂样品的高灵敏度生物分析系统的发展。这些器件
研究建立力-电协同驱动的细胞微流控培养腔理论模型
细胞培养液在微流控生物反应器中受到外界物理场(如压力梯度或者电场)作用流动而产生流体剪应力,并进一步刺激种子细胞调控其内部基因的表达,从而促进细胞的分化和生长,这个过程在自然生命组织内的微管中亦是如此。考虑到细胞培养微腔隙中液体流动行为很难实验量化测定,理论建模分析是目前可行的研究手段。太原理工大学王兆伟等通过研究建立了矩形截面的细胞微流控培养腔理论模型,将外部的物理驱动场(压力梯度与电场)与培养
新型微流控设备进一步优化液体活检
伊利诺伊大学芝加哥分校和澳大利亚昆士兰科技大学的研究人员开发了一种设备,可以从患者血液样本中分离出单个癌细胞。这种微流控设备的工作原理是将在血液中发现的各种细胞类型按其大小进行分离。也许有朝一日,这种设备可以让快速价廉的液体活检帮助发现癌症并制定有针对性的治疗计划。这项发现发表在《微系统与纳米工程》(Microsystems & Nanoengineering)在线期刊上。“这
微流控直击现场——基于微流控的水凝胶纤维制备与生物医学应用
8月17日,由生物谷主办的2018(第二届)微流控技术前沿研讨会隆重召开。演讲嘉宾, 清华大学副教授,博士生导师;教育部新世纪人才计划,北京高校青年英才计划;北京理化分析测试技术学会青委会主任委员,中国分析测试协会青委会副主任委员,中国化学会青年化学工作者委员会会员,梁琼麟副教授为大家带来了题为《基于微流控的水凝胶纤维制备与生物医学应用》的精彩演讲。梁琼麟清华大学化学系副教授生物水凝胶纤维的研究三
聚焦微流控会议现场,详解高体积通量过滤技术
8月17日,由生物谷主办的2018(第二届)微流控技术前沿研讨会隆重召开。演讲嘉宾,北京大学微纳电子学研究院副院长,集成微纳系统研究所(MEMS)所长,微米纳米加工技术国家级重点实验室副主任;第六届微纳流体技术进展国际会议共同主席,第28,29届IEEE微机电系统国际会议执行技术委员会委员,第19届固态传感器、执行器与位系统国际会议技术委员会委员王玮教授为大家介绍了他的团队在高体积通量过滤技术方面
2018第二届微流控技术前沿研讨会圆满召开
8月17日,由生物谷主办的第二届微流控技术前沿研讨会在上海隆重开幕。本次会议集中展示了近年来我国微流控芯片研究取得了突破性进展,结合了医疗、医药领域的实际需求, 体现了微流控最新最前沿的技术应用(单细胞分析、单分子检测、体外诊断、器官仿生和药物活性、毒性研究),力求推动国内微流控技术在医学、生命科学等相关领域的快速发展。此次会议是国内为数不多的顶级微流控技术专业会议。邀请到来自中国科学院大连化学物
IVD/POCT底层技术革命-微流控行业现状全解析
第一代的计算机体积庞大、计算缓慢,而如今已演变成由一个个微小的电路集成芯片。而微流控技术浓缩了复杂的生物医学实验,有可能大大提升医学检验的效率。本文主要从微流控的应用领域、市场数据、主要用户等方面展开:一. 什么是微流控?微流控技术(microfluidic)就是把生物、化学、医学等领域分析样品的过程,包括制备、反应、分离、检测等基本单元集成到一块微米尺度的芯片上,自动完成
2018(第二届)微流控技术前沿研讨会--火热进行中......
8月17日,由生物谷主办的2018(第二届)微流控技术前沿研讨会隆重召开。大会主席,中国科学院大连化学物理研究所研究员,大连理工大学教授;英国皇家化学会会士,德国洪堡基金(AvH)学者,日本学术振兴会学者;lab on a chip 杂志第四届编委,国际微分离分析战略委员会会委员,前Electrophoresis杂志副主编林炳承研究员为我们带来了题为《微流控芯片:单细胞分析到全器官仿生》的精彩演讲
—2018(第二届)微流控技术前沿研讨会
2018年8月17-18号在上海由生物谷举办的“2018(第二届)微流控技术前沿研讨会”邀请微流控领域内的知名专家和学科领军人物、企业高层,从微流控芯片在医疗、医药领域的研究和应用现状出发,分享经验,展示观点,探讨新思路和新方法,分享新技术,推动微流控技术在生命科学、医学等相关领域的快速发展。 由于医药研究和体外诊断市场需求,促使微流
微流控——医疗界的检测革命
作为一种精确控制和操控微尺度流体的技术,微流控(microfluidics)以在微纳米尺度空间中对流体进行操控为主要特征,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势在于多种单元技术在整体可控的微小平台上灵活组合、规模集成,涉及工程学、物理学、化学、微加工和生物工程等多个领域的学科交叉。&nbs