Communications Biology:研究人员开发出基于液滴微流控的链霉菌高通量筛选技术平台
链霉菌是重要的工业微生物,可以生产蛋白、小分子药物等高附加值产品。工业生产中,常用随机诱变手段产生大量的链霉菌突变库,但缺乏与之相适配的高通量筛选手段用以获得目标突变株。已报道的基于流式细胞分选的方法只能对链霉菌的原生质体或孢子进行筛选,由于抗生素等次级代谢产物多产生于菌丝发酵的平台期,因而原生质体或孢子均无法代表链霉菌的真实发酵状态
研究揭示绿僵菌附着胞形成时胞内脂滴微自噬的调控途径
Autophagy在线发表了中国科学院分子植物科学卓越创新中心王成树研究组完成的研究论文Activation of microlipophagy during early infection of insect hosts by Metarhizium robertsii。该研究揭示昆虫病原真菌绿僵菌通过微自噬途径调控附着胞脂滴降解,
研究人员突破纳升液滴精准输送和采样的纤维尖端微流控技术
上海交通大学医疗机器人研究院院长杨广中教授于Advanced Science杂志上在线发表论文“Microfluidics at Fiber Tip for Nanoliter Delivery and Sampling”(DOI: 10.1002/advs.202004643)。活检是切取少量活体组织进行病理学检查的常规技术,是众多疾病诊断的黄金标准。液体
快速化微液滴生成和高密度颗粒阵列研究方面取得进展
体外诊断是疾病早期筛查和预后评估的重要方法,随着医学和检测手段不断发展,体外诊断的精准性、灵敏性不断提高,但仍有众多痕量核酸和蛋白对高灵敏检测方法提出严苛要求,例如重大精神疾病诊断、肿瘤早筛、病原筛查、伴随诊断等。近年来以数字PCR(dPCR)和数字ELISA(dELISA)为代表的单分子计数带来了数字化分子诊断的革命,实现了单分子绝
研究利用液滴微流控系统实现高通量类器官可控负载与培育
近日,中国科学院大连化学物理研究所微流控芯片研究组研究员秦建华团队在实现功能类器官可控负载与培育研究方面取得新进展,建立了一种基于双水相液滴微流控系统的杂合水凝胶微囊可控制备新体系,可高通量产生干细胞来源胰岛类器官,并利于降低其变异性。类器官(organoids)是近年来新兴的体外3D器官模型,被认为是生命科学领域的重大技术突破。类器官指的是一种在体外培育,
研究开发新型微滴反应筛选技术并开展单细胞分析应用
中国科学院微生物研究所微生物资源前期开发国家重点实验室杜文斌研究组和黄力研究组共同开发了一种新型的微流控界面纳升注射技术(Interfacial Nanoinjection, INJ),该技术可以将传统的生化反应体系微缩在一个纳升体积的油包水微液滴体系中完成。针对这一技术创新,团队申请了多项中国发明专利和美国专利,并研制了基于INJ技术的小型桌面系统。该系统和国外同类产品如美国Labc
Talanta:报道高灵敏和防污染的“准共聚焦”微液滴数字PCR阅读仪
清华大学医学院生物医学工程系郭永实验室在《分析学家》(Analyst)在线以封底(back cover)发表题为《一种双荧光四分类微液滴数字PCR数据的准确、可靠和自动分类方法——密度分水岭算法》(A density-watershed algorithm (DWA) method for robust, accurate and automatic classification of dual-
Nature:华人科学家开发微流体类胚胎模型,助力揭开胚胎发育的秘密
2019年9月17日讯 /生物谷BIOON /--早期人类胚胎发育包括广泛的谱系多样化、细胞命运分化和组织模式。尽管早期人类胚胎发育具有基础性和临床重要性,但由于种间差异和对人类胚胎样本的可获得性有限,科学家们目前为止仍然不清楚对早期人类胚胎发育的原因。为了揭示其中的秘密,来自密西根大学的华人科学家Jianping Fu和加州大学的研究人员合作,报告了一种人类多能干细胞(hPSCs)体外微流控培养
液滴微流体:从概念验证到实际应用?
2019年8月16日讯 /生物谷BIOON /——液滴微流体技术构成了一个多样化的实用工具集,使化学和生物实验能够在高速和高效率的情况下完成。事实上,近年来,基于液滴的微流控工具在材料合成、单细胞分析、RNA测序、小分子筛选、体外诊断和组织工程等方面都取得了良好的应用效果。来自苏黎世联邦理工学院 (ETH Zurich)的Andrew J. deMello课题组曾于2011年在《Chemical
微流体芯片在用于癌症液体活检的胞外囊泡分离和分析中的应用
2019年8月9日讯/生物谷BIOON/---胞外囊泡(extracellular vesicle, EV)正在成为癌症液体活检中有前景的生物标志物。从细胞培养基或生物液体中分离出高纯度和高质量的EV仍然是一项技术挑战。在过去十年中,人们已开发出基于微流体的EV操纵技术。迄今为止开发出的基于微流体的EV分离技术能够分为两类:表面生物标志物依赖性的方法和尺寸依赖性的方法。微流体技术允许在单个芯片上集