打开APP

科研人员完成染色体水平青虾全基因组图谱拼装

  日前,中国水产科学研究院淡水渔业研究中心傅洪拓研究员团队与华大海洋研究院石琼研究员团队合作,完成了染色体水平青虾基因组图谱拼装,该项工作是青虾和虾蟹类基因组研究的重要突破。研究团队依托江苏省水产三新工程“基于全基因组测序的青虾种质资源和功能基因挖掘(D2015-16)”等项目的资助,对青虾进行全基因组测序和拼装。由于青虾基因组约为4.

2021-01-26

科学家如何成功绘制出有望改善多种人类疾病研究的图谱

本文中,小编整理了多篇重要研究成果,共同解读科学家们如何成功绘制出有望改善多种人类疾病研究的图谱!分享给大家!【1】Cell:重磅!科学家开发出新型着色技术成功绘制出了大脑的多色图谱!doi:10.1016/j.cell.2020.12.012人类的大脑中包含了大约860亿个神经元细胞,其由大约100万亿个突触连接编织在一起;每个细胞都发挥着关键作用,其能帮

2021-01-25

Science重磅:人类皮肤细胞图谱揭示出湿疹和牛皮癣的病因

  皮肤是由许多不同类型的细胞组成的复杂组织,它人体最大的器官,充当着屏障的作用,防止细菌和病原体的侵入,以保护我们的健康。然而,在两种常见的慢性炎症性皮肤病——特应性皮炎(湿疹)和银屑病(牛皮癣)中,由于患者的免疫系统过度活跃,导致皮肤出现大面积皮损,并引发令人痛苦且顽固的瘙痒。这些皮肤疾病往往会对患者的生活产生重大影响,但其诱因至今也

2021-01-25

云南怒江草果全基因组精细图谱绘制成功

  从20世纪70年代开始,云南省怒江州就开始种植草果,到2020年,种植面积已达111万亩,不仅是全国草果的核心产区,也是当地群众脱贫致富的重要经济作物。为了加快提高草果遗传改良效率,培育高产、抗病、优质、安全新品种,对从源头创新保障草果产业健康可持续发展,2019年9月,怒江州联合华南农业大学等国内外高校科研院所机构,正式启动草果全基

2021-01-15

科学家开发出新型着色技术成功绘制出了大脑的多色图谱

2021年1月12日 讯 /生物谷BIOON/ --人类的大脑中包含了大约860亿个神经元细胞,其由大约100万亿个突触连接编织在一起;每个细胞都发挥着关键作用,其能帮助我们运动肌肉、处理环境信息并形成大脑记忆等。考虑到大量的神经元及其连接,目前研究人员并不清楚神经元是如何协同工作从而产生大脑思想或行为的。日前,一篇刊登在国际杂志Cell上的研究报告中,来自

2021-01-12

Cell:开发出一种自动化的电子显微镜平台,可高分辨率地重建神经回路图谱

2021年1月17日讯/生物谷BIOON/---神经元网络是如何连接成功能性神经回路的呢?这一直是神经科学领域的一个长期问题。为了回答这个基本问题,来自美国波士顿儿童医院和哈佛医学院的研究人员在一项新的研究中开发了一种新的方法来研究这些神经回路,并在这个过程中更多地了解关于它们之间的连接。相关研究结果于2021年1月4日在线发表在Cell期刊上,论文标题为“

2021-01-17

细胞图谱最新研究进展

1.Nature:构建出人类肺部的细胞图谱,为理解和治愈肺部疾病奠定基础doi:10.1038/s41586-020-2922-4在一项新的研究中,来自美国斯坦福大学的研究人员构建出人类肺部的细胞图谱,该细胞图谱突出了构成肺部不同部分的几十种细胞类型。相关研究结果于2020年11月18日在线发表在Nature期刊上,论文标题为“A molecular cel

2020-12-28

我的命运我主宰,而细胞中的RNA分子也是如此

2020年12月18日讯/生物谷BIOON/---在人体的任何时刻,在大约30万亿个细胞中,DNA正在被“读取”成信使RNA(mRNA)分子,这是DNA和蛋白之间的中间步骤,这一过程被称为转录。科学家们对转录是如何开始的有了很好的了解:称为RNA聚合酶的蛋白被招募到DNA分子的特定区域,并开始沿DNA链移动,边走边合成mRNA分子。但是,这个过程的一部分还不

2020-12-18

Science子刊:利用智能手机超灵敏定量检测唾液中的新冠病毒

2020年12月16日讯/生物谷BIOON/---根据一项新的研究,一种基于唾液的便携式智能手机平台为COVID-19测试提供了一种超灵敏但易于使用的方法,它可以在15分钟内给出测试结果,而无需进行当前金标准所需的资源密集型实验室测试。该方法在12名COVID-19感染者和6名健康对照者中进行了测试。相关研究结果于2020年12月11日在线发表期刊上,论文标

2020-12-16

Science:利用基因相互作用图谱确定蛋白复合物的整体结构

2020年12月15日讯/生物谷BIOON/---生物学家最令人烦恼的任务之一是弄清楚蛋白---这些承担细胞工作重任的分子---是如何完成它们的工作的。每种蛋白的表面都有各种旋钮、褶皱和裂缝,决定了它能做什么。科学家们可以相当容易地在单个蛋白上可视化观察这些特征。但蛋白并不是单独行动的,科学家们还需要知道蛋白在一起工作时形成的复合物的形状和组成--他们称之为

2020-12-15