Genome Biol:基因互作促进组织器官的形成
2019年6月6日 讯 /生物谷BIOON/ --尽管近几十年来我们对人体细胞和组织的了解逐步增加,但许多问题仍然没有得到揭示。例如,实验室中用于研究细胞类型的技术具有局限性,而且不能实现对细胞功能的精细细节。为克服这一障碍,由Holger Heyn领导的西班牙巴塞罗那基因组调控中心(CRG)的国家基因组分析中心(CNAG-CRG)的一组科学家开发了一种新的计算工具,基于数学理论,能够推断健康和病
Nat Biomed Eng:器官芯片技术有助于体外研究人类基因组
2019年5月15日 讯 /生物谷BIOON/ --人类微生物组,即生活在体内和体内的大量微生物,深刻地影响着人类的健康和疾病。特别是人体肠道菌群,其中含有最密集的微生物,不仅可以分解营养物质,释放对我们生存至关重要的分子,而且也是许多疾病发展的关键因素,包括感染,炎症性肠病,癌症,代谢性疾病,自身免疫性疾病和神经精神疾病。我们对人体 - 微生物组相互作用的了解大多基于使用基因组或宏基因组分析的粪
器官移植领域相关研究进展一览
2019年5月23日 讯 /生物谷BIOON/ --本期为大家带来的是器官移植领域的最新研究进展,希望读者朋友们能够喜欢。1. Science:重大进展!自体移植冷冻保存的青春期前睾丸组织可恢复猴子的生育力doi:10.1126/science.aav2914.三分之一的儿童癌症幸存者有可能因化疗或放疗而变得不能生育,并且鉴于他们的精子或卵子尚未发育成熟,因此当他们成年时,使用这些精子或卵子进行辅
Cell Stem Cell:迷你器官有助于研究肝癌基因的功能
2019年5月24日 讯 /生物谷BIOON/ --来自Hubrecht研究所和Radboud大学的研究人员开发了一种人体模型,他们使用类器官或小器官来研究肝癌中突变的特定基因的功能。使用这种方法,他们发现BAP1(一种通常在肝癌中发生突变的基因)的突变会改变细胞的行为,这可能使它们更容易被侵入。他们的研究结果发表在5月23日的《Cell Stem Cell》杂志上。类器官是可以在实验室中生长的微
Nat Photonics: 新成像技术能够对组织器官进行更加“深入”的观察
2019年5月21日 讯 /生物谷BIOON/ --在最近的一项研究中,科学家们开发出了一种新的生物医学成像造影剂。作者表示,这一突破克服了“更深入地观察”活组织的局限性,并为光学成像技术的重大改进开辟了道路。这一发展是复旦大学与悉尼科技大学(UTS)之间国际合作的结果,该成像技术有可能将生物成像分辨率超越目前CT和PET成像技术的分辨率。该研究发表在Nature Photonics上。“这项研究
其他器官也会受致命打击!
2019年5月13日讯 /生物谷BIOON /——结核病会影响身体的哪些部位?结核病最常见的影响是肺部,也就是我们所知的人体肺部系统。但它也会影响其他器官,即肺外结核病。其他可能受到影响的器官包括覆盖肺部的内膜(胸膜结核);中枢神经系统(结核性脑膜炎);骨骼和关节(肌肉骨骼系统);淋巴结;腹部--可能影响肝脏、脾脏和肠道的部位(腹部结核);肾和膀胱(泌尿生殖系统结核);和血液。约翰内斯堡进行的一项
Nature子刊:开发出可在几分钟内检测基因突变的CRISPR芯片
2019年4月18日讯/生物谷BIOON/---在一项新的研究中,来自美国加州大学伯克利分校和克莱蒙特学院联盟凯克研究所的研究人员将CRISPR与用石墨烯制成的电子晶体管结合在一起,构建出一种可在几分钟内检测出特定基因突变的新型手持设备。这种称为CRISPR-Chip(CRISPR芯片)的设备可用于快速诊断遗传疾病或评估基因编辑技术的准确性。他们使用这种设备来鉴定来自杜兴氏肌营养不良(DMD)患者
韩国研发金颗粒生物芯片,能够迅速准确识别癌细胞
韩国《亚洲经济》网站发布消息称,日前,韩国一项研究成果实现了十几分钟内完成基因检测。研究使用纳米尺度金颗粒制作的生物芯片识别癌细胞DNA特征,能够迅速完成对特定癌症标志物的检测而无需测序,可以识别单点基因突变。该研究成果发表在国际学术杂志《自然·通讯》上。这项工作由在高丽大学任职的中国学者马兴毅教授设计开展,韩、美联合团队共同完成。研究人员表示,这项成果能够实时和低成本诊断,有望应用于
首个3D打印的“人造心脏”诞生 有望变革器官移植
以色列是一个不折不扣的“创新之国”。位于中东,饱受战火冲突的以色列其国土面积虽不如北京与上海的总和,人口也只有区区800万,却已经诞生了10多位诺奖得主。今日,来自以色列特拉维夫大学的科学家们又给我们带来了一项突破。一支科研团队用人类的脂肪组织,通过一系列神奇的操作,最终成功3D打印出了一颗“人造心脏”。它虽然只是一个微缩版的原型,却是人类“首次成功设计并打印出一个具有细胞、血管、心室
研究发现茉莉酸调控根器官再生的机理
植物固着生长并通过协调生长发育过程和抗性反应从而应对环境变化带来的胁迫与损伤。植物受到由生物或非生物胁迫引起的物理伤害以后,可以通过激活生长过程完成组织和器官再生。然而,人们尚不清楚植物遭受机械损伤以后激活器官再生的分子机理。在特定逆境胁迫下,植物通过茉莉酸途径抑制主根生长而促进侧根发生(Sun et al., 2009, Plant Cell; Chen et al., 2011,