微芯生物西达本胺(爱谱沙)乳腺癌新适应症获批,治疗PTCL续约进入医保目录!
2019年11月30日讯 /生物谷BIOON/ --深圳微芯生物科技股份有限公司(Chipscreen Biosciences,以下简称“微芯生物”)近日宣布,该公司药物西达本胺(Chidamide,商品名:爱谱沙® / Epidaza®)获国家药品监督管理局(NMPA)批准一个新的适应症,联合芳香化酶抑制剂用于治疗激素受体阳性(HR+)、人表皮生长因子受体-2阴性(HER2-
微流控构筑微纳功能材料及其生物医学应用
近日,中国科学院深圳先进技术研究院医工所纳米调控研究中心副研究员杜学敏(通讯作者)及其团队成员赵启龙(第一作者)、崔欢庆(共同第一作者)和王运龙在材料领域期刊Small上发表微流控构筑微纳功能材料及其生物医学应用综述,全面总结了基于微流控技术构建形态、形貌、结构、组成乃至性能精准可调的微纳功能材料的研究进展,并详细评述了这类材料在疾病诊断、药物递送、组织修复等多领域的应用和
强生2针疫苗方案(Ad26.ZEBOV,MVA-BN-Filo)在欧盟进入加速评估!
2019年11月11日/生物谷BIOON/--强生旗下杨森制药公司近日宣布,已向欧洲药品管理局(EMA)提交了2份营销授权申请(MAA),申请批准研究性埃博拉疫苗方案用于预防由扎伊尔埃博拉病毒株引起的埃博拉病毒病(EVD)。2份MAA已被平行提交,支持2针免疫方案中的每种疫苗(Ad26.ZEBOV,MVA-BN-Filo)。今年9月,EMA人用医药产品委员会(CHMP)已授予这些申请加速评估资格。
我国科研人员实现超高密度微藻异养培养
中国科学院水生生物研究所、国家投资开发公司微藻生物科技中心与暨南大学科研人员组成的联合团队,近期实现超高密度微藻异养培养,突破了微藻大规模工业化应用的关键瓶颈。微藻是单细胞生物,可以用作生产能源、食品、饲料的原料,在工业领域有着广阔的应用前景。异养培养是一种新型的微藻生物质生产方式,与传统的光自养培养相比具有效率高、可控性高、易于工业化生产的优势。受技术水平所限,当前微藻在异养培养条件下能够达到生
Mol Ther :研究人员开发新的“DNA针”治疗肌肉营养不良
2019年10月23日讯 /生物谷BIOON /--加拿大阿尔伯塔大学的研究人员正在测试一种新的治疗方法,这种方法有望成为一种更有效的治疗方法,可以帮助近一半的杜氏肌营养不良症(DMD)患者。这种治疗方法利用了DNA样分子的混合物,可以使一种叫做肌营养不良蛋白的蛋白质的显着再生,这种蛋白作为支撑梁来保持肌肉强壮。在患有DMD的人群中,这种蛋白几乎不存在。图片来源:https://cn.bing.c
《Cell》重磅:北京大学张泽民课题组与勃林格殷格翰联合发表关于单细胞测序刻画肝癌免疫微环境动态特征的研究
北京大学生命科学学院、北京未来基因诊断高精尖创新中心(ICG)、生物医学前沿创新中心(BIOPIC)张泽民课题组、首都医科大学附属北京世纪坛医院彭吉润课题组以及德国药企勃林格殷格翰(Boehringer Ingelheim)公司肿瘤免疫与免疫调节部门多位科学家,在国际期刊Cell上发表了题为Landscape and Dynamics of Single Immune Cells in Hepat
利用微流控技术开发高纯度极微量细胞纯化分离装置
细胞辨识、观察、计数与纯化分离是生物医疗领域中不可或缺的基础技术。20世纪中叶,一种通过连续高压流体牵引大量细胞通过特定讯号辨识系统的概念被提出,并发展为目前生物医疗研究常用的一项设备-流式细胞分选仪。然而,该仪器也有其技术缺点,比如该仪器缺乏即时影像资讯、及无法实现100%细胞分离纯度。除此之外,操作过程中的高压流体也容易造成细胞损伤或生理状态改变。另一方面,流式细胞分选仪亦难以纯化
研究开发新型微滴反应筛选技术并开展单细胞分析应用
中国科学院微生物研究所微生物资源前期开发国家重点实验室杜文斌研究组和黄力研究组共同开发了一种新型的微流控界面纳升注射技术(Interfacial Nanoinjection, INJ),该技术可以将传统的生化反应体系微缩在一个纳升体积的油包水微液滴体系中完成。针对这一技术创新,团队申请了多项中国发明专利和美国专利,并研制了基于INJ技术的小型桌面系统。该系统和国外同类产品如美国Labc
研究揭示聚苯乙烯微塑料对人类肺泡上皮细胞的毒性
微塑料作为一种新型污染物在大气中多以悬浮性细颗粒物的形式存在,可随着呼吸进入人体,与呼吸道黏膜和肺细胞产生接触,并影响其生理功能。微塑料因其粒径小,并具有一定组织亲和性,更易于吸附在细胞表面,破坏膜结构,尤其更容易被细胞以多种机制内吞并在胞内累积,从而造成细胞基因表达和调控的异常,引发炎症反应,甚至引起癌变。中国科学院沈阳应用生态研究所微生物资源与生态组、污染生态过程组在该
微环境控释型生物材料研究取得进展
心肌梗死(MI)是由冠状动脉闭塞缺血、缺氧所导致的不可逆的心肌损伤,是目前世界范围内心血管死亡和致残的主要原因。心脏缺血导致心肌细胞大量死亡,同时局部上调的基质金属蛋白酶(MMPs)降解心脏细胞外基质(ECM),降低组织力学性能,导致梗死区域心室壁逐渐变薄,整体扩张,加速心功能恶化。原位恢复梗死区域的血供,减轻ECM降解成为治疗心肌梗死的潜在手段。研究表明,心肌内注射生物材料和生物活性因子(如血管