多篇文章解读如何有效预防/治疗青光眼?
青光眼是一种常见的眼部疾病,其发病原因是眼内压间断或持续升高,而且持续的高眼压给眼球各部分组织都会带来损害,治疗不及时会导致失明。如今全球有将近7000万青光眼患者,预计到2020年,这一数字将上升为7960万。近20年来抗青光眼都没有什么新药推出,而近年来科学家们在青光眼方面的研究取得了多项研究进展,本文中小编就对相关研究进行整理,分享给大家!【1】青光眼的遗传因素是什么?如何解决?doi:10
基于微流控细胞共培养技术的仿生心肌炎症损伤模型的构建
小编推荐会议:2018(第二届)微流控技术前沿研讨会 北京大学药学院的屠鹏飞、姜勇教授团队在Analytical Chemistry 发表基于微流控技术的心肌炎症损伤模型的新成果。第一作者为艾晓妮博士,该课题得到国家自然科学基金和国家重大新药创制专项的支持。该研究首次以巨噬细胞介导的炎症反应为切入点,利用仿生微流控芯片技术构建巨噬细胞和心肌细胞的共培养体系,操控多细胞实现高时
Axovant收获沉默替代基因疗法 用于眼咽肌营养不良症
7月8日,Axovant Sciences宣布该公司已获得Benitec Biopharma公司用于治疗眼咽肌营养不良症(OPMD)的研究性沉默替代(Silence & Replace)基因治疗项目的全球独家权利,并已开展在神经系统疾病中另外五种基因治疗产品的研究合作。沉默替代基因治疗技术旨在在单一载体构建体中实现DNA指导的RNA干扰(沉默)以及基因的功能性拷贝(
我国将主导研究近视眼发病机制的医学难题
生活中“眼镜族”无处不在,但遗憾的是近视眼发病机制至今仍不清楚。一项由我国科研团队主导、多国科研人员共同参与的近视眼大数据多中心研究项目日前启动,有望为我国乃至全球近视眼的发病机制及治疗模式提供参考借鉴。来自国际顶尖医学杂志《柳叶刀》的研究发现,近视眼发病率呈爆发性增长,提示环境因素在近视眼发病中起到主要作用。但对近视眼相关环境因素客观、准确定量的方法一直缺乏,导致其发病机制至今不明。由我国中南大
研究发现肿瘤选择性仿生纳米粒可抑制乳腺癌原位瘤生长及肺部转移
乳腺癌严重危害女性健康,转移是导致乳腺癌患者死亡的主要原因。目前传统化疗依然是临床治疗乳腺癌原发瘤及转移灶的主要手段。但由于化疗药物缺乏针对肿瘤细胞的靶向性,导致严重毒副作用,极大限制了化疗的临床应用。针对上述问题,中国科学院上海药物研究所药物制剂中心博士研究生郎天群在研究员李亚平和副研究员尹琦的指导下,以乙酰肝素酶(Hpa)在肿瘤细胞内高表达作为突破口,综合仿生纳米技术与前药策略,设
青光眼的遗传因素是什么?如何解决?
2018年3月14日讯 /生物谷BIOON /——在两项最近发表的研究中,西北大学医学院的科学家及其国际合作者发现了一些基因突变会引起引流不当和眼压增加,从而导致一种先天性青光眼,同时他们还发现了一种可能在未来治疗这种疾病的方法。图片来源:James Heilman, MD/WikipediaSusan Quaggin博士是医学系肾脏科和高血压科主任及Feinberg心血管研究所的主任,也是最近分
仿生人工肌肉研究获进展
仿生人工肌肉材料是20世纪90年代迅速发展的一类新型智能材料,正不断地掀起全球科学家的研究热潮,在航空航天、仿生机器人以及生物医疗等工程领域具有重要的应用价值。离子聚合物-金属复合材料(Ionic polymer-metal composites, IPMC),也称为电化学驱动器,是一种典型的仿生人工肌肉材料。它是由两层电极与离子聚合物组装而成的三明治结构,在电场作用下,依靠离子在电极界面的可逆脱
Stem Cell Rep:科学家利用“第三只眼”来检查干细胞所具有的特性
小编推荐:您不可错过的2018(第四届)肠道微生态与健康国际研讨会2018年2月12日 讯 /生物谷BIOON/ --近日,来自俄罗斯和美国的科学家们通过研究设计了一种新方法,其能够制造携带三种不同标签的分裂干细胞,截止到目前为止,研究人员只能同时使用两个标签,而这种新方法能够增加对干细胞分裂分析的速度和准确性,同
IOVS:利用基因疗法治疗青光眼有戏!蛋白酶体抑制增加眼睛小梁网中的基因运送效率
2018年1月19日/生物谷BIOON/---当通过降低眼内压力来测试治疗青光眼的基因时,来自美国威斯康星大学麦迪逊分校的研究人员偶然发现了一个问题:他们无法有效地将基因运送到控制眼内液体压力的细胞中。基因仅在进入细胞之中才能够发挥作用。青光眼是最为常见的致盲性疾病之一,是由于眼内压力过高造成的,其中眼内压力过高通常是眼睛中的液体排出管(fluid drain)堵塞引起的。威斯康星大学麦迪逊分校眼
仿生水下可逆黏附材料研究获进展
大多数胶黏剂在空气中具有优异的粘接强度,而在水中却很快丧失效果,这是因为水分子进入粘合界面处对胶黏剂分子产生水化/溶胀/降解作用,从而使得粘接性能迅速丧失。因此,水下高黏附材料一直是工程材料领域的研究难点与热点。科研人员通过仿生多巴胺、界面超分子作用、聚电解质络合作用等手段,发展了不同类型的水下黏附材料,但很难实现材料的水下可逆黏附性调控。近日,中国科学院兰州化学物理研究所周峰课题组与