打开APP

Science:破解细胞每次分裂时染色体正确遗传之谜

2021年1月11日讯/生物谷BIOON/---有机体从单个细胞开始,经过几百万次分裂,最终产生了骨骼、心脏、大脑和其他组成生命的成分。在这个复杂的过程中,主要动力是DNA通过染色体在每个子细胞中的分离而发生转移。在每次细胞分裂过程中,所有染色体的复制和精确分布是至关重要的。如果遗传的染色体成分发生了改变,哪怕是轻微的改变,也会导致出生缺陷和某些癌症。在一项

2021-01-11

Nature:华大等机构揭示鸭嘴兽多条性染色体和卵生之谜

  1月7日,华大与浙江大学、澳大利亚阿德莱德大学、丹麦哥本哈根大学等单位联合在国际顶级学术期刊《自然》(Nature)公布了单孔目基因组的研究成果,并首次通过全基因组的数据研究了单孔目多对性染色体以及哺乳动物部分性状的演化过程。作为最早与其他哺乳动物分歧的物种,单孔目(如鸭嘴兽、针鼹)处在哺乳动物的演化过程中一个非常重要的位置,是我们了

2021-01-09

Nature:揭示染色体碎裂导致癌细胞耐药性机制

2020年12月27日讯/生物谷BIOON/---癌症是世界上最严重的健康疾病之一,这是因为与某些疾病不同,它是不断变化的,不断演变以逃避和抵制治疗。在一项新的研究中,来自美国加州大学圣地亚哥分校和英国剑桥大学等研究机构的研究人员描述了一种称为“染色体碎裂(chromothripsis)”的现象是如何破坏染色体,然后让它们以最终促进癌细胞生长的方式重新组合。

2020-12-27

AJHG:染色体的重组失败或许只是卵细胞的一个共同特征而已

2020年12月17日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志American Journal of Human Genetics上的研究报告中,来自华盛顿州立大学等机构的科学家们通过研究发现,超过7%的人类卵细胞中含有至少一组不交换的染色体对,这或许就显示出了极高水平的减数分裂失败表现。研究结果表明,从人类卵细胞发育开始,就有相当大一部分比

2020-12-17

Sci Adv:关键染色体蛋白的突变或会诱发多种机体神经发育疾病

2020年12月8日 讯 /生物谷BIOON/ --近日,一篇刊登在国际杂志Science Advances上题为“Histone H3.3 beyond cancer: Germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenera

2020-12-08

多篇文章揭示染色体的奥秘!

近年来,科学家们对染色体进行了大量研究,本文中,小编就对相关重要研究成果进行解读来揭示机体染色体的奥秘,与大家一起学习! 【1】Nature:揭示MSL复合物特异性识别雄性X染色体机制doi:10.1038/s41586-020-2935-z人类女性有两条X染色体,男性只有一条。这种染色体的不平衡也延伸到了动物王国的其他分支。有趣的是,不起眼的果蝇

2020-11-24

科研人员发表高质量染色体级醋栗番茄基因组序列

醋栗番茄是栽培番茄的野生祖先种,以其优异的抗性、浓郁的风味、可与栽培番茄直接杂交、快速转育优良性状等特点,广泛用作现代番茄育种的重要种质资源。其基因组和遗传多样性的研究,对充分挖掘该野生种质资源的育种潜力和价值,促进番茄产业发展意义重大。因此,醋栗番茄的基因组研究受到研究者关注,此前已有个别基因组草图发布,但是,这些草图并不完整,高度碎片化,限制了它们在育种

2020-12-02

Nature:揭示胚胎干细胞利用独特的策略保护它们的染色体末端

2020年11月29日讯/生物谷BIOON/---通常而言,位于染色体末端的端粒随着细胞的每次分裂而缩短。在一项新的研究中,来自美国国家癌症研究所等研究机构的研究人员发现小鼠胚胎干细胞(mESC)有一种独特的方式来保护它们的端粒。他们发现mESC并不像大多数细胞那样,将暴露的端粒作为受损的DNA处理,而是调用通常仅在发育的最早阶段使用的基因,以避免不必要的D

2020-11-29

Nature:揭示多能性干细胞不依赖于TRF2的染色体末端保护机制

2020年11月29日讯/生物谷BIOON/---端粒是位于染色体末端的特殊结构,它保护我们的DNA,确保细胞健康分裂。在一项新的研究中,来自英国弗朗西斯-克里克研究所和澳大利亚悉尼大学的研究人员发现干细胞中的端粒保护机制是极其独特的。相关研究结果于2020年11月25日在线发表在Nature期刊上,论文标题为“TRF2-independent chromo

2020-11-29

研究人员基于纳米酶仿生设计人工过氧化物酶

近日,中国科学院生物物理研究所/中科院纳米酶工程实验室研究员高利增、范克龙和中科院院士阎锡蕴团队通过整合纳米酶的结构和功能特点,仿照天然酶的活性中心和辅因子的协同作用,设计了一种能够模拟过氧化物酶体内多种天然酶活性的纳米酶,并基于此纳米酶构建了一种可在生理条件下工作的人工过氧化物酶体(artificial peroxisome),并将其用于改善高尿酸血症和缺

2020-12-15