人工智能在生物医学领域大有作为(第2期)
2019年8月30日讯/生物谷BIOON/---随着图像识别、深度学习、神经网络等关键技术的突破带动了人工智能新一轮的大发展,“人工智能+医疗”概念应运而生。在业界达成的一个共识是“人工智能+医疗”主要集中在机器学习辅助诊疗及分析这类领域。我国相关部门也认识到人工智能在医疗领域的应用需求,也陆续出台过相关文件。如2016年6月,国务院公布了《关于促进和规范健康医疗大数据应用发展的指导意见》,明确指
新型人工智能系统或能优于临床医生对乳腺癌进行准确诊断!
2019年9月1日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志JAMA Network Open上的研究报告中,来自加利福尼亚大学的科学家们通过研究开发了一种人工智能系统,其或能够帮助病理学家更准确地读取活组织检查结果及更好地检测并诊断乳腺癌。这种新型系统能帮助解释医学成像结果从而用于诊断乳腺癌(人眼无法有效区分),其几乎能够像一名经验丰富的病理学家一样对乳腺癌进行准确诊断。图片来源:
Nature:利用人工智能预测急性肾损伤
2019年8月12日讯/生物谷BIOON/---在一项新的研究中,美国和英国的研究人员将人工智能(AI)应用于解决检测住院患者急性肾损伤(acute kidney injury, AKI)的问题。相关研究结果近期发表在Nature期刊上,论文标题为“A clinically applicable approach to continuous prediction of future acute k
人工智能可助尽早诊断自闭症
自闭症谱系范畴的神经发育性疾病通常要到孩子几岁时才会被确诊,但那时对患者的干预和治疗已过了最佳时期。近日发表在美国《国家科学院学报》上的一项新研究显示,利用人工智能分析瞳孔变化或心率波动可帮助尽早诊断这类疾病。此前研究发现,自闭症谱系障碍患者的大脑胆碱能神经环路异常,而大脑胆碱能神经环路异常会伴随患者瞳孔自发扩张或收缩以及心率异常。美国波士顿儿童医院的研究人员观察了实验鼠的瞳孔变化,发
利用人工智能开发2型糖尿病创新疗法 诺和诺德扩展合作
e-therapeutics公司宣布与诺和诺德(Novo Nordisk)公司达成协议,扩展在2型糖尿病领域的研发合作。此前,两家公司已经在使用e-therapeutics公司的网络驱动药物开发平台(Network-Driven Drug Discovery, NDD),在2型糖尿病领域发掘创新生物机制和治疗手段。e-therapeutics公司是一家利用网络生物学(Network)技术和in s
云计算和大数据重点专项项目成果“多模态自然人机交互神经系统疾病辅助诊断工具”入选国家卫健委“医疗健康人工智能应用落地30最佳案例”
中国科学院软件研究所和中国医学科学院北京协和医院在国家重点研发计划“云计算和大数据”重点专项项目“云端融合的自然交互设备和工具”的支持下,将自然人机交互技术与神经系统疾病临床诊断方法结合,研制了“多模态自然人机交互神经系统疾病辅助诊断工具”,成功应用于神经系统疾病的早期预警与辅助诊断当中,在国家健康医疗相关领域发挥了重要作用,入选国家卫健委颁发的“医疗健康人工智能应用落地3
新研究借助人工智能探寻食管癌致癌基因
食管癌是常见的消化道肿瘤,全世界每年约有30万人死于食管癌。其发病率和死亡率各国差异很大。我国是世界上食管癌高发地区之一,每年平均病死约15万人。早发现、早诊断对提高5年生存率至关重要;早期发现食管癌,特别是对于食管癌高发期、高危人群,最好每年进行胃镜1次检查。英国一个研究团队日前在英国《自然·通讯》杂志上报告,他们借助人工智能技术能更好地分析食管癌的致癌基因,基于这些新发现未来有望提
目前人工智能对乳腺癌的诊断与人类专家一样好!你选哪个?
2019年7月18日讯 /生物谷BIOON/——乳腺癌是英国最常见的癌症。它占全国所有新病例的15%,大约八分之一的妇女将在一生中被诊断出患有该病。在英国国家医疗服务体系(NHS)中,乳腺癌筛查通常包括乳房x光检查。但是,随着能够阅读这种早期测试的专家数量减少,这种测试的未来将面临风险。虽然这种技能短缺无法立即弥补,但人工智能领域有望取得的进步可能会有所帮助。图片来源:http://cn.bing
药监局发布医疗AI产品审批要点 人工智能企业是否准备就绪?
在药监局进行“人工智能类医疗器械注册申报公益培训”半年之后,关于审批要求相关的官方详细文件终于下达。半年前的会议上,药监局细致入微的分析了影响医疗人工智能器械审批的每一个过程,细化到对每个指标进行了详尽的讲解。这一次,药监局正式向AI企业发布了审批相关文件《深度学习辅助决策医疗器械软件审批要点》(以下简称《要点》),以文件的方式将审批相关的具体指标确立下来。相比上一次会议,
研究利用人工智能预测蛋白质“光学指纹”
蛋白质是生命的基石,生物的功能依赖于既稳定而又灵活可变的蛋白质结构。蛋白质的光谱响应信号,尤其是紫外光谱,可以称之为蛋白质骨架的“指纹”。这个“光学指纹”,经过理论模拟的解读,可以揭示出精确的蛋白质结构,为生命科学和医学诊断提供极其重要的信息。然而,蛋白质的结构极其复杂多变,需要做大量的高精度的量子化学理论计算。由于计算量太大,即使是最厉害的超级计算机轻易也“吃不消”。所以蛋白质的光谱的理论解读是