打开APP

中国科学家公布斑马鱼1号染色体全基因敲除研究成果

斑马鱼是一种小型热带淡水鱼。自上世纪70年代美国俄勒冈大学的George Streisinger教授将斑马鱼首次引入实验室以来,斑马鱼逐渐成为与小鼠、果蝇、线虫并列的四大模式动物之一。在40多年的斑马鱼研究发展历史中,欧美斑马鱼学者发起了几次大规模的斑马鱼随机诱变突变体库(Mullins et al. 1994; Solnica-Krezel et al.

2020-01-11

Fluidigm荣获2019生命科学产业奖细胞生物学最佳新产品金奖

美国南加州时间2019年12月9日,生命科学工具市场研究与咨询机构领导者——BioInformatics Inc.(隶属于Science and Medicine Group旗下)将2019年生命科学产业奖(LSIA)细胞生物学最佳新产品金奖授予Fluidigm公司(纳斯达克:FLDM)产品Maxpar® DirectTM一站式免疫分型系统。Max

2019-12-17

2019年终盘点:中国科学家重磅级研究成果解读

时光总是匆匆易逝,2019年已经接近尾声,迎接我们的将是崭新的2020年,在即将过去的2019年里,我国科学家们在多个研究领域取得了多项意义重大、影响深远的研究成果。本文中小编就对2019年中国科学家发表的重要研究成果进行整理和解读,分享给各位读者!图片来源:Cell, doi:10.1016/j.cell.2018.12.030【1】Cell:揭示新型抗病毒因子抑制HIV-1程序性-1核糖体移码

2019-12-27

中国学者入选《自然》2019十大科学人物

 英国《自然》杂志17日发布2019年全球十大科学人物,中国北京大学的邓宏魁教授凭借在人类干细胞基因编辑领域取得的成果入选。《自然》新闻特写主编里奇·莫纳斯特斯基说,这个榜单选取了那些在本年度科学界重要事件中扮演关键角色的人物。邓宏魁是唯一一名登上榜单的中国学者。据《自然》介绍,他和团队对人类干细胞进行基因编辑,使它们能抵御艾滋病病毒感染,随后移植

2019-12-25

中国科协发布2019年度“十大科学传播事件”

 17日,中国科协在京举办了“典赞·2019科普中国”活动,活动现场发布了2019年度“十大科学传播事件”评选结果,它们分别是:1. 嫦娥四号登陆月球背面2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近的预选着陆区,并通过“鹊桥”中继星传回了世界第一张近距离拍摄的月背影像图。此次任务实现了人类探测器首次月

2019-12-25

关于2019年中国科学院年度人物和年度团队拟表彰名单的公示

为贯彻落实中办、国办印发的《关于进一步弘扬科学家精神 加强作风和学风建设的意见》,大力弘扬新时代科学家精神,树立良好作风学风,充分发挥中国科学院新时代先进典型的榜样先锋作用,在“一所一人一事”先进事迹征集评选基础上,经中国科学院年度人物和年度团队初评委员会评审,并经中国科学院党的建设工作领导小组审议,拟授予张敬杰等8个个人和团队2019年“中国科学院年度人物

2019-12-24

创新评价研究体系 中国医学科学院发布2018年度医院和医学院校科技量值

 中国医学科学院日前发布了《2018年度中国医院科技量值报告》和《2018年度中国医学院校科技量值报告》,创新利用科技量值(STEM)评价体系对医院、医学院校的科技体系、能力与水平作出客观量化评价。中国医学科学院自2014年起进行中国医院科技影响力评价,在此基础上,于2018年对评价体系进行优化设置,提出“科技量值”(Science and Tec

2019-12-24

杰克森实验室致力与全球生命科学工作者共同改善人类健康

2019年11月4日,杰克森实验室开启了中国秋季论坛的第一站,上海站,这是杰克森实验室自2018年底成立中国团队后,再一次启动与中国科学家们的学术交流之旅。随着全球范围内生命科学的进步,科学家们使用各种疾病模型来模拟人类疾病,而在研究过程中,有关模式动物的遗传稳定性至关重要,而这一点正是作为拥有超过90年小鼠遗传学经验的杰克森实验室一直坚持和强调的。 杰克森实验室的总裁兼首席执行官Edison T

2019-11-27

中国科学家发现新一代减肥药物候选靶点

 超重和肥胖及其并发症在世界范围内呈爆发性流行趋势,已经成为全球面临的一个重要且严峻的公共健康问题,亟需长效、安全的肥胖预防和治疗药物。目前临床上治疗肥胖的药物主要通抑制食欲和营养吸收,但效果极其有限。棕色脂肪和米色脂肪是消耗能量的脂肪,已有很多文献报道,其激活可减轻肥胖引起的脂肪肝、胰岛素抵抗、糖尿病等代谢综合征。鉴于棕色脂肪在防治肥胖等相关代谢

2019-12-10

中国科学家发现保护线粒体新化合物用于神经退行性疾病的治疗

  豆状结构的线粒体是三磷酸腺苷(ATP)的来源,而ATP是生物体内一切生命活动所需能量的直接来源。当线粒体受损时,神经系统疾病就会迅速恶化,导致了不可逆的神经损伤,如中风和帕金森症。鉴于线粒体损伤在几种常见和毁灭性神经退行性疾病中的作用,研发保护线粒体的药物至关重要。近日,北京生命科学研究所相关团队在国际学术期刊PNAS上在线发表了题为

2019-12-11