科学家开发出人类细胞分裂的首个蛋白质互作模型
2018年9月19日 讯 /生物谷BIOON/ --有丝分裂是(即细胞一分为二)有机体生命的基础过程,近日,一项刊登在国际杂志Nature上的研究报告中,来自欧洲分子生物学实验室的科学家们通过研究绘制出了促进细胞分裂的首张蛋白质互作图谱,其能够帮助研究人员有效追踪推动细胞分类过程的特殊蛋白的位置和种类。图片来源:Arina Rybina and Julius Hossain, Ellenberg
嘉宾摘要分享——2018(第三届)蛋白质修饰与疾病研讨会
蛋白质修饰通常是增加一定的官能团到蛋白质中,修饰结果对调控蛋白质活性状态、折叠、稳定性、空间构象和配体结合具有至关重要的作用。常见的蛋白质翻译后修饰过程有磷酸化、乙酰化、泛素化、糖基化和甲基化等, 它们使蛋白质的结构更为复杂多样, 遗传调控更为精确精细,功能更为完善,作用更为专一。此外,治疗用蛋白质药物代谢动力学特性的优化、药效的提高也可以通过多种方式的化学修饰来实现。 蛋白质修饰对生理
Nat Commun:生物学家是RNA与蛋白质的“媒人”?
2018年8月12日 讯 /生物谷BIOON/ --最近,来自德克萨斯大学达拉斯分校的研究者们研究了生命分化的进程,他们希望能够提供线索预防有副作用的分子间互作以及会导致疾病发生的互作的发生。在最近这项发表在《Nature Communications》杂志上的文章中,作者揭示了RNA与蛋白质相互作用的机制。通过这项研究,研究者们希望能够预测以及控制这些分子相互交流的方式。(图片来源:www.pi
我国颜宁课题组从结构上揭示人Ptch1蛋白识别Shh机制
2018年8月16日/生物谷BIOON/---Hedgehog(Hh)通路对胚胎发生和组织再生是至关重要的。Hh信号是通过分泌的和脂质修饰的蛋白Hh结合到膜受体Patched(Ptch)上而被激活的。在缺乏Hh的情况下,Ptch通过一种未知的间接机制抑制下游的G蛋白偶联受体Smoothened(Smo)。Hh与Ptch的结合减轻了对Smo的抑制并且开启让Hh通路遭受转录激活的信号转导事件。Hh信号
病毒蛋白与基因组RNA 构筑DNA-蛋白复合结构多级可控构筑
生物大分子在自然进化中发展出一套独特的“自下而上”自组装方式进行各种复合结构的可控装配,为多功能生物纳米材料的加工制备提供了绝佳范例。其中,核酸-蛋白质纳米复合体系的可控构筑,不仅将实现生物学上两种基本组装模式的有效结合,以提供愈加复杂的生物结构模板,还有助于体内生物大分子相互作用的深入理解,对仿生器件制造和生物医学应用具有深远意义。近年来,DNA纳米技术取得众多令人瞩目的研究成果。研究人员在计算
PTC蛋白质修复疗法Translarna治疗杜氏肌营养不良(DMD)II期临床成功
2018年7月10日/生物谷BIOON/--PTC Therapeutics公司近日公布了Translarna(ataluren)治疗2-5岁无义突变型杜氏肌营养不良(nmDMD)患者的II期临床研究Study 030的结果。数据显示,Translarna在这一患者群体中的安全性和药代动力学特征与该药在5岁以上儿童中的一致。重要的是,数据还显示,Translarna治疗的患者在第28周和第52周的
研究揭示多聚谷氨酰胺延伸蛋白募集泛素受体蛋白质的分子机制
5月30日,国际学术期刊The FASEB Journal 发表了中国科学院生物化学与细胞生物学研究所胡红雨研究组的研究论文PolyQ-expanded huntingtin and ataxin-3 sequester ubiquitin adaptors hHR23B and UBQLN2 into aggregates via conjugated ubiquitin。该研究发现多聚谷氨酰胺
Science:利用磷酸化蛋白质组学阐明阿片类药物在大脑中激活的信号通路
2018年6月28日/生物谷BIOON/---阿片类药物是作用于大脑中的强效止痛药,但它们具有一系列有害的副作用,包括成瘾。在一项新的研究中,来自德国马克斯-普朗克生物化学研究所(MPIB);奥地利因斯布鲁克医科大学、因斯布鲁克大学;美国天普大学和丹麦哥本哈根大学的研究人员开发出一种工具,从而能够更加深入地认识大脑对阿片类药物作出的反应。他们利用质谱法确定了大脑的五个不同区域中的蛋白磷酸化---蛋
肠道菌群或能与特殊蛋白质“合作”来调节机体维生素D的水平
2018年7月1日 讯 /生物谷BIOON/ --日前,来自宾夕法尼亚州立大学的研究人员通过研究发现,肠道中的一类细菌或能利用细胞信号蛋白来调节维生素D的产生,维生素D作为机体的关键营养物质,其主要能够参与骨质的构建和维持。图片来源:iStock Photo/royaltystockphoto研究人员对小鼠进行研究发现,帮助消化食物并且维持机体免疫系统功能的微生物群落,能够通过一种名为成纤维细胞生
两项研究表明利用CRISPR-Cas9基因组编辑有望治疗α-1抗胰蛋白酶缺乏症
2018年7月5日/生物谷BIOON/---在两项开创性的概念验证研究中,两个研究团队利用CRISPR-Cas9基因组编辑技术校正导致α-1抗胰蛋白酶(alpha-1 antitrypsin, AAT)缺乏症的基因突变,成功地在α-1抗胰蛋白酶缺乏症(AATD)模式小鼠的肝脏中进行靶向基因校正,将低水平的正常AAT恢复到正常水平。图片来自iStock/Meletios Verras。在第一项研究中