打开APP

研究揭示MAPK信号途径调控小菜蛾对Bt Cry1Ac杀虫蛋白抗药性信号网络的拓扑结构和功能机制

  近日,蔬菜花卉研究所蔬菜害虫防控团队绘制了Bt Cry1Ac杀虫蛋白的高抗小菜蛾中MAPK信号途径反式调控多个中肠受体基因和非受体同源基因差异表达的信号网络。该研究首次揭示了MAPK信号途径参与害虫抗药性的分子调控网络,研究结果对于指导重大农业害虫对Bt抗性的监测预警以及转Bt基因抗虫作物的抗性治理具有重要的理论和实践意义。相关内容以

2021-09-28

新冠肺炎中细胞因子风暴的信号途径及处理

2019年冠状病毒病(新冠肺炎)大流行已经成为一场全球性危机,其破坏性比以往任何其他传染病都要大。它影响了全球相当大一部分人口的身体和精神,并摧毁了企业和社会。目前的证据表明,免疫病理可能是COVID-19发病机制的原因,包括淋巴细胞减少、中性粒细胞增多、单核细胞和巨噬细胞调控失调、I型干扰素(IFN-I)反应减少或延迟、抗体依赖性增强特别是细胞因子风暴(C

2021-07-21

研究解析ABA信号转导途径关键调控机制

中国科学院分子植物科学卓越创新中心研究员王鹏程研究组等在Nature Communications上发表研究论文Initiation and amplification of SnRK2 activation in ABA signaling,揭示了植物激素脱落酸(ABA)信号通路中核心组分SnRK2激活过程中的起始-放大机制。干旱、高盐、低温等胁迫诱导植物

2021-05-05

Cell子刊综述:“饿死”癌细胞,氨基消耗疗法的途径与挑战

  在过去数十年间,化学疗法的进步以及免疫疗法、靶向疗法的问世显着提高了癌症患者的存活率,然而对于部分癌症患者而言,随之而来的“后遗症”严重影响着生活质量。因此,如何降低癌症疗法的副作用、改善患者生活质量成为科学家们长期关注的焦点。与正常细胞不同,癌细胞能够无限增殖并破坏正常的细胞组织。为了满足增殖的需求,癌细胞会提高代谢效率,汲取更多养

2021-04-11

研究揭示Hedgehog信号途径稳态调控新机制

  北京大学生命科学学院朱健课题组近期在Journal of Cell Biology发表了题为“Competition between two phosphatases fine-tunesHedgehog signaling”的研究论文。该项研究发现了磷酸酶PP6的催化亚基PpV特异地调控Hedgehog (Hh) 信号途径,阐释了P

2021-02-10

我国科学家发现骨发育过程中新的信号途径

 VGLL4作为Hippo信号通路的一个新成员,能够与转录辅因子YAP竞争结合转录因子TEADs,从而抑制YAP-TEADs转录复合物的活性,实现对生长发育的调控。然而,VGLL4在骨骼发育和骨骼稳态中的确切功能仍不清楚。2020年10月23日,中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究人员在Science Advance

2020-11-30

研究推演Karrikin信号途径调控根际微生物组的模式

微生物组能够提升作物生产力,利用微生物组服务作物生长和抗逆是当前农业的发展趋势。作物如何实现对根际微生物组的有效调控,是当前迫切需要回答的科学问题。对此,中国科学院东北地理与农业生态研究所黑土区农业生态重点实验室土壤微生物研究员田春杰团队开展研究。Karrikin(KAR)是燃烧植物释放的一类丁烯酸内酯化合物,能够刺激种子萌发及促进幼苗生长,有利于大火后植被

2020-10-01

茉莉信号通路转录调控机理研究获进展

激素在植物生长发育和对环境适应性的调控中发挥重要作用。茉莉酸、生长素、赤霉素、水杨酸等植物激素的受体定位于细胞核内,与转录调控紧密偶联。因此,解析激素信号介导的转录调控网络对于理解植物激素信号的动态响应过程及作用机理具有重要意义。转录中介体(Mediator)是真核生物中高度保守、由多个亚基组成的蛋白复合体,在转录调控中发挥调控作用,被称为真核生物基因转录的

2020-08-16

研究揭示脱落茉莉协同调控水稻种子萌发的新机制

 近日,中国水稻研究所种子发育课题组在New Phytologist在线发表了题为“Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in ri

2020-07-12

Science:NELL2介导的腔液信号途径是雄性生育力所必需的

2020年6月12日讯/生物谷BIOON/---精子要使卵子受精,必须先在雄性的附睾中成熟。如今,在一项新的研究中,来自日本大阪大学、山梨大学、东京大学、大冢制药有限公司和美国贝勒医学院的研究人员发现一连串事件:睾丸分泌的一种蛋白在腔液中移动,与附睾上的受体结合,诱导其分化并分泌第二种蛋白,从而使得精子发育成熟并让每个精子在女性中具有运动能力。相关研究结果发

2020-06-12