聚焦产学研 共话iPSC在细胞治疗中的应用与产业化发展
iPSC正在各种细胞疗法应用中进行探索,目的是逆转机体损伤或疾病进而达到治疗疾病的效果。取自患者自体的体细胞经诱导后成为iPSC,可分化成特定类型的体细胞从而逆转机体损失或疾病,同时避免了免疫排异、伦理学等问题。通过从感兴趣的疾病患者中生成 iPSC,并将其分化为疾病特异性细胞,通过这种方法,iPSC 可以“在培养皿中”有效地建立疾病模型。此外,iPSC具有提供生物学同类的细胞类型的潜力,这些细胞可以用于针对各类组织细胞的化合物鉴定、筛选,靶标验证,和作为新药发现的工具。
当前细胞治疗产业化相对成功的产品是以CAR-T为代表的免疫细胞治疗。但是这些血液来源的免疫细胞主要适用疾病还是集中在肿瘤。在其它不同的组织、器官或者更多的疾病治疗领域,iPSC衍生细胞疗法则有着巨大潜力。尤其是多能干细胞定向分化技术和基因编辑技术等的逐步成熟,极大地加速了iPSC衍生细胞疗法的发展。iPSC重编程和定向分化技术使得低成本、批量生产、工程化改造人体功能细胞成为可能。作为再生医学的“种子细胞”,iPSC因其独特的无限增殖能力和发育全能性正成为多种疾病的细胞治疗临床试验热点,这个领域开始进入高速发展的时期。
基于此,本期由MedSci梅斯&生物谷携手赛默飞世尔科技于2022年10月12日联合推出“iPSC在细胞治疗中的应用与产业化发展”空中讲坛,将邀请相关行业专家为大家解读iPSC细胞治疗的研究进展,期待与大家相聚云端!
单细胞多组学研究与临床应用峰会前会之单细胞技术在发育生物学中的应用
一个受精卵是如何从单个细胞增殖、分化为大量不同类型的细胞、组织和器官,又是怎样生长、成熟,最终构成一个完整的个体的?这一直是发育生物学领域中一个很大的谜团。由于技术和方法的制约,这个谜团过去一直无法解开。在过去的数年时间里,科学家们利用常规的测序技术,但无法将关键信息从繁多的结果中有效提取出,而单细胞测序技术是以单个细胞为单位进行高通量测序,对其中的遗传信息进行分析,反映细胞间的异质性、研究多种动物中的发育过程。如今,单细胞测序技术结合计算生物学,已经可以描绘单个受精卵逐步发育分化的详细转录图谱,为人类解开受精卵发育分化之谜照亮了一线曙光。
为展示国内单细胞多组学的重大研究进展,促进科研成果转化,加强各研究领域的信息与资源的共享,由生物谷主办的第四届单细胞多组学研究与临床应用峰会将于2021年11月19-20日在上海举办,为了更好的丰富本次大会的内容,我们特别举办单细胞会前会,采取线上直播形式,主要围绕单细胞前沿技术在发育生物学中的应用进行,期待您的参加。
类器官模型的新一代培养方案与转化医学研究应用前沿
类器官作为一种成体干细胞体外培养出的3D细胞培养物,成为新一代疾病机制研究的利器与再生医学的未来,类器官模型能够实现个体化治疗研究从而实现精准医疗,类器官模型在药物研发、药敏测试能够实现大规模高通量药物筛选,大大降低新药要发成本和时间,除此之外,类器官在指导临床用药以及作为疾病特异性模型对疾病的机制研究都具有重要的意义。
鉴于类器官在医学产业广阔的应用前景,生物谷携手生命科学领域领先品牌赛默飞世尔科技,共同举办本次论坛,本次讲坛将深度探讨类器官模型在培养中的问题与解决方案以及最新应用领域的疾病机制研究。希望通过本次论坛能促进领域内人士的广泛的交流与合作,推进类器官研究与生物医药领域的深度融合。
主要话题:疾病和生理学中的3D细胞培养模型的建立、常见问题及解决方案,3D细胞培养创新技术以及类器官在疾病机制研究和细胞治疗领域的应用研究,基于iPSC平台获得类器官如何快速大规模获取干细胞等。
多维度成像方案与 CRISPR-Cas9 技术结合助力药学研究
CRISPR-Cas9系统是一种适应性免疫系统,可作为操纵基因组序列的快速、高效、低成本且可扩展的工具。该系统可对活细胞中重复或低重复序列基因位点进行实时多位点同步成像,广泛应用于动物和植物细胞研究中。CRISPR-Cas9基因编辑技术因其高效基因编辑功能,已被广泛应用于基因治疗药物的开发。
CRISPR-Cas9技术用于药物筛选,不但可提高药物疗效,药物反应数据和CRISPR基因筛查相结合,还可调查数百种病变细胞,更好地准确了解药物如何靶向病变细胞。同时,鉴于CRISPR-Cas9多维成像技术与疾病治疗结合方面取得的成就,引起了科研院所医药企业纷纷关注。 因此,生物谷携手全球显微镜与科学仪器的知名品牌徕卡共同举办本次讲坛,希望通过本次讲坛能够充分与从事基因编辑技术与药物研发的领域专家进行交流,达成多方面的合作,共同促进CRISPR-Cas9成像技术的发展。
外泌体功能学研究前沿追踪
外泌体是由活细胞分泌的30-150纳米的微小囊泡,身材小,却是近几年来生物学研究的一个非常热门的领域,公开统计数据显示,2019年外泌体相关的国家自然科学基金中标项目总计约600项,总金额达2.54亿元,同比增长了44.5%,并且仍在呈现逐年递增的趋势。
在逐步向临床和应用研究拓展的同时,外泌体中搭载的各种分子的具体功能、作用机制等仍存在很大的未知空间。外泌体携带蛋白质、脂质、DNA、RNA等信息物质,通过传递这些分子对细胞通讯发挥重要作用,并且参与免疫应答、病毒感染、代谢和心血管疾病、神经退行性疾病以及癌症进展等多种生理和病理过程。了解外泌体的精准通讯功能及对各种疾病尤其是肿瘤的具体作用机制,对于疾病的临床诊断治疗具有极大的参考价值。而作为基础研究的技术基石,如何获取高纯度的外泌体仍然是目前研究面临的重大挑战,外泌体的分离提纯及检验技术的更新突破也一直是业界研究开发的核心之一。
生物谷携手生命科学领域创新品牌IBA推出外泌体空中讲坛,聚焦外泌体功能学研究板块,邀请该领域专家学者分享最新研究成果,并一起探讨当下研究中的难点与焦点。除专家报告外,本次讲坛也将设置在线答疑环节,邀请观众与专家深入交流、共话外泌体研究的现状与趋势。
主要话题:外泌体形成、分泌与生物学作用; 外泌体蛋白成分、核酸成分研究;外泌体的细胞间通讯作用;外泌体与肿瘤微环境;外泌体与免疫反应;外泌体RNA在疾病发生发展中的分子机制;间充质干细胞来源的外泌体功能研究 ;外泌体分离检测新技术新方法等
布鲁克-核磁共振在生物样本代谢组学研究中的新进展和新应用
作为生物样本代谢组学研究的两大利器之一,近年来核磁共振技术的发展,尤其是在高度自动化、标准化和精确定量等方面的突破,促进了代谢组学在慢病转化研究中的新应用。
本报告将分享Bruker Biospin最新发布的疾病诊断研究(IVDr)方案,包括一键式全自动地完成人体体液样本的核磁数据采集、代谢物定性定量和疾病诊断研究,并将分享在心脑血管疾病、癌症、遗传代谢病、精准营养和新冠肺炎中的重要应用。
敬请期待。
关于布鲁克
布鲁克致力于支持科学家取得突破性的科学发现并开发新的应用以提升人类的生活质量。布鲁克的高性能科技仪器以及高价值分析和诊断解决方案,让科学家能够在分子、细胞和微观层面上探索生命和材料的奥秘。通过和用户的紧密合作,布鲁克致力于科技创新、提升生产力并实现用户的成功。我们的业务领域包括生命科学分子研究、应用和药物应用、显微镜和纳米分析、工业应用、细胞生物学、临床前成像、临床表型组学、蛋白质组学研究以及临床微生物学等。
毛细管区带电泳-质谱技术应用于自下而上蛋白质组学研究
研究蛋白质组在不同生物状态下的动态变化对于阐明蛋白质在疾病发生与发展过程中的作用极其的重要。基于质谱的自下而上蛋白质组学方法已经被广泛的应用于各种生物问题的研究。在线反相色谱质谱(RPLC-MS)一般是蛋白质组学研究的首选技术。目前,基于RPLC-MS的自下而上蛋白质组学方法并不完美, 还有一些技术挑战亟待解决。
首先,大规模的准确的区分蛋白质变体 (protein isoforms) 非常困难,因为大多数蛋白质的鉴定仅仅是依赖于有限的几条肽段。进一步改进肽段分离的峰容量有望改善蛋白质变体的表征。其次,单细胞蛋白质组分析极具挑战,因为目前的RPLC-MS技术的灵敏度还相差甚远。发展更高灵敏度的蛋白质组学方法势在必行。毛细管区带电泳质谱技术(CZE-MS) 被认为是另一个自下而上蛋白质组学的重要工具,因为它可以实现高效的肽段分离以及高灵敏度的肽段检测。
在此次演讲中,将介绍应用新型超低流速鞘流液接口和离子源(深圳市永道致远科学技术有限公司CMP Scientific品牌EMASS-II ion source)的CZE-MS技术而开发的蛋白质组学方法,并对蛋白质组学的历史及其主要挑战和机遇,对如何提高CZE-MS对蛋白质组学的灵敏度和峰容量的方法进行讨论,和对基于CZE-MS的蛋白质组学的未来发展方向进行一些思考。
主办单位:深圳市永道致远科学技术有限公司
官网:http://www.evergauge.cn/
膜蛋白和线粒体蛋白组学在医学研究中的应用
膜蛋白即生物膜所含蛋白,主要参与信号识别和传递、物质运输、细胞粘附和酶促反应等。大约有30%的基因编码膜蛋白质,其中50%是目前已知的药物靶点。通过对膜蛋白质进行分离、质谱鉴定和定量,对进一步阐释生命机理、寻找疾病标志物、筛选药物靶点及毒理学研究具有重要意义。
线粒体是真核细胞内重要的细胞器,除参与能量代谢外,还与多种生理、病理活动密切相关,如退行性疾病、衰老、癌症等。运用蛋白质组学技术,研究不同生理和病理状态下线粒体蛋白的变化趋势和相互关系,为线粒体相关疾病的诊断和治疗提供重要的标志物和药物作用靶点。
欢迎大家准时参加《膜蛋白和线粒体蛋白组学在医学研究中的应用》-在线讲堂。
真真儿的干货,12月26日(周三)14:00,记得提前锁定金开瑞哦!
单分子测序开启转录组学研究新时代
以基因测序技术发展为背景,阐述以第三代测序技术为核心的全长转录组测序与二代测序技术的转录组测序的差异,以及在研究基因结构等问题上所带来的巨大优势。并以经典案例为参考,阐述全长转录组测序在样品制备、实验设计及数据分析等环节的切入点和注意事项
从组成到功能:日渐深入的微生物组学研究
得益于高通量测序技术的飞速发展,如今已能系统、深入地解析微生物组与宿主/环境的紧密联系。通过微生物rRNA基因测序、宏基因组学和宏转录组学研究等方法,结合“全微生物组关联分析(MWAS)”的核心策略,能精准解码菌群组成谱、功能谱和表达谱,挖掘关键生物标记物,进而阐明“菌群——宿主——环境(生态系统)”之间复杂的互作机制和因果链。本报告将围绕微生物组大数据,全面探讨并阐述微生物组研究的具体策略、解析方法和最新进展。