打开APP

非编码RNA与肿瘤

我们建立了一套筛选功能性ncRNA的方法(RNA-SELEX-seq)。采用这种筛选方法,我们在人黑色素瘤细胞yusac细胞核中筛选得到5种可能与人PSF蛋白结合的功能性长ncRNA

2014-09-19 课时:36分钟

高通量技术在非编码RNA领域中的应用

高通量技术指的是芯片、二代测序等能够帮助研究人员在短时候内进行全基因组范围内的快速筛选的技术,被广泛应用于基因组、转录组和表观遗传等方面。高通量技术在非编码RNA研究中的应用也十分广泛,不但可以筛选用于肿瘤诊断的miRNA分子标记,还应用于miRNA和lncRNA的功能研究中。近年来出现的一些新技术,如链特异性测序(strand-specific RNA sequencing),降解组测序(Degradome sequencing ),RNA免疫共沉淀测序(RNA Immunoprecipitation Sequencing:RIP-Seq)等,以及一些新芯片与测序产品也为非编码RNA的研究提供了有力的工具。这里通过对一些应用案例的解析,讨论高通量技术在非编码RNA研究中的应用进展。

2014-09-26 课时:28分钟

非编码RNA参与狼疮等自身免疫病的病理机制及临床意义

信号通路中的一些关键分子的表达或功能失调会导致细胞内信号通路紊乱从而参与疾病。非编码RNA(ncRNA),包括miRNA和长链非编码RNA(lncRNA)在信号传递通路的调节中有着重要作用。我们以系统性红斑狼疮这一重要自身免疫疾病为研究模型来研究非编码RNA在自身免疫病关键致病通路中的作用。我们已发表的系列工作揭示了遗传及表观遗传因子可导致与狼疮重要免疫表型相关的一组miRNA表达异常。我们也进一步多方位阐述了多个miRNA分别或协同参与狼疮脏器受累相关的免疫炎症通路的异常活化的分子机制。更为重要的是,通过体外实验和体内研究证实了靶向干预疾病相关miRNA可以改变疾病的异常免疫病理表型(Nat Med 2012; PLoS Genet 2011; Blood 2010;J Immunol 2010; Arthritis Rheum 2009; 2010; 2011。受邀在Nat Rev Rheumatol上发表特邀综述)。干扰素通路异常激活在系统性红斑狼疮的发病中起着重要作用。近期我们的研究发现lncRNA能调节干扰素通路中的一个关键转录因子STAT1的表达从而参与STAT1信号传递通路的调节。这些研究为深入阐明ncRNA在自身免疫性疾病发生发展中的细胞和分子机理,为今后发展ncRNA靶向治疗提供理论基础。

2014-09-26 课时:27分钟

晶芯® 人类长链非编码RNA芯片V3.0的设计及在疾病研究中的应用

长链非编码RNA (lncRNA)以RNA的形式在多种层面上,通过影响染色质状态,RNA转录和翻译层面调控基因的表达。近年研究者非常关注lncRNA在各种生物学过程和疾病过程中所起到的作用,形成了新的研究热点。 博奥生物与中科院生物物理所陈润生院士研究组,基于已经公布的大量lncRNA数据库及实验室发现的800多条中等长度的非编码RNA,推出了自主设计的lncRNA芯片。继成功推出lncRNA V1.0 和 V2.0 芯片基础上,鉴于当前lncRNA 研究的快速进展,收集和更新lncRNA 序列信息,经过严格的序列筛选和整合,推出了新一代的晶芯lncRNA V3.0 芯片服务。最新的V3.0芯片包括约3.8万条lncRNA和约3.4万条mRNA探针,可以同时针对lncRNA和mRNA进行检测。在充分保证探针容量和重复数量(lncRNA和mRNA检测探针均重复2次以上)的前提下,降低了芯片成本和实验费用。在检测成本和检测准确性之间达到较好的平衡点。 通过lncRNA芯片检测,研究人员能够迅速获得与特定生物学过程或者疾病相关的lncRNA的表达变化,从而发现与特定生物学过程相关的lncRNA,寻找与疾病相关的lncRNA。

2014-09-26 课时:28分钟

细菌非编码RNA的系统发现和功能研究

毕研究员等开展了结核菌非编码RNA系统发现、标注及功能研究来回答其有多少非编码RNA?基因组定位?与结核菌的致病性和耐药产生相关的有哪些?可望在结核菌的致病和耐药机制方面获得重要发现,为结核病的治疗和预防提供重要依据。

2014-09-26 课时:44分钟

非编码RNA参与狼疮等自身免疫病的病理机制及临床意义

信号通路中的一些关键分子的表达或功能失调会导致细胞内信号通路紊乱从而参与疾病。非编码RNA(ncRNA),包括miRNA和长链非编码RNA(lncRNA)在信号传递通路的调节中有着重要作用。我们以系统性红斑狼疮这一重要自身免疫疾病为研究模型来研究非编码RNA在自身免疫病关键致病通路中的作用。我们已发表的系列工作揭示了遗传及表观遗传因子可导致与狼疮重要免疫表型相关的一组miRNA表达异常。我们也进一步多方位阐述了多个miRNA分别或协同参与狼疮脏器受累相关的免疫炎症通路的异常活化的分子机制。更为重要的是,通过体外实验和体内研究证实了靶向干预疾病相关miRNA可以改变疾病的异常免疫病理表型(Nat Med 2012; PLoS Genet 2011; Blood 2010;J Immunol 2010; Arthritis Rheum 2009; 2010; 2011。受邀在Nat Rev Rheumatol上发表特邀综述)。干扰素通路异常激活在系统性红斑狼疮的发病中起着重要作用。近期我们的研究发现lncRNA能调节干扰素通路中的一个关键转录因子STAT1的表达从而参与STAT1信号传递通路的调节。这些研究为深入阐明ncRNA在自身免疫性疾病发生发展中的细胞和分子机理,为今后发展ncRNA靶向治疗提供理论基础。

2014-11-10 课时:27分钟

晶芯® 人类长链非编码RNA芯片V3.0的设计及在疾病研究中的应用

长链非编码RNA (lncRNA)以RNA的形式在多种层面上,通过影响染色质状态,RNA转录和翻译层面调控基因的表达。近年研究者非常关注lncRNA在各种生物学过程和疾病过程中所起到的作用,形成了新的研究热点。 博奥生物与中科院生物物理所陈润生院士研究组,基于已经公布的大量lncRNA数据库及实验室发现的800多条中等长度的非编码RNA,推出了自主设计的lncRNA芯片。继成功推出lncRNA V1.0 和 V2.0 芯片基础上,鉴于当前lncRNA 研究的快速进展,收集和更新lncRNA 序列信息,经过严格的序列筛选和整合,推出了新一代的晶芯lncRNA V3.0 芯片服务。最新的V3.0芯片包括约3.8万条lncRNA和约3.4万条mRNA探针,可以同时针对lncRNA和mRNA进行检测。在充分保证探针容量和重复数量(lncRNA和mRNA检测探针均重复2次以上)的前提下,降低了芯片成本和实验费用。在检测成本和检测准确性之间达到较好的平衡点。 通过lncRNA芯片检测,研究人员能够迅速获得与特定生物学过程或者疾病相关的lncRNA的表达变化,从而发现与特定生物学过程相关的lncRNA,寻找与疾病相关的lncRNA。

2014-11-13 课时:28分钟

孙树汉:肝癌发生发展过程中的长链非编码RNA功能研究

原发性肝细胞癌(以下简称肝癌,Hepatocellular carcinoma,HCC)是我国常见恶性肿瘤之一。进一步探索研究新基因的功能与肝癌发生、发展的关系,对揭示肝癌发生、发展的精确分子机制、设计合理的治疗药物及判断预后, 进一步提高我国肝癌的治疗水平具有重要意义。

近年来,长链非编码RNA(long noncoding RNA, lncRNA) 在生理及疾病过程中扮演的重要角色逐渐引起人们广泛的关注。lncRNA是一类长度超过200nt的非编码RNA分子。这些RNA并不编码蛋白或者只是编码很短的多肽,起初他们被认为是基因组转录的“噪音”,不具有生物学功能。

然而,越来越多的研究表明lncRNA参与了基因组印记、转录控制、转录后调控、蛋白功能调节等信号转导过程中重要环节。且在肿瘤的发生、发展过程中也发挥了重要作用,为全面认识肿瘤提供了新的视角。 我们对肝癌发生发展过程中lncRNA参与的调控网络及临床意义开展了大量的工作。

发现在肝癌在组织中差异表达的lncRNA可以将癌组织和癌旁组织完整地区分,说明在癌组织中lncRNA有特征性表达谱。克隆并鉴定了在肝癌发生发展过程中有重要功能的lncRNA分子,如lncRNA-LET、lncRNA-HEIH、lncRNA-MVIH,并对这些分子在肝癌组织标本中的表达规律及临床意义,对肝癌细胞生物学功能的影响,在肝癌细胞中的亚细胞器的定位,相互作用分子等方面进行了深入探讨,我们的研究结果表明lncRNA可作为肝癌诊断、治疗、预后判断的新靶点。

主要研究结果连续发表于Cancer cell、Molecular Cell、Hepatology等杂志。

2015-05-04 课时:10分钟

魏文胜:使用配对gRNA的长链非编码RNA进行CRISPR - Cas9介导基因组缺失筛选

介绍了通过基于CRISPR/Cas9技术,使用成对的gRNA进行基因缺失筛选长非编码RNA

2017-08-18 课时:42分钟

干细胞中的长链非编码RNA功能与RNA调控网络研究

近年来大量研究表明非编码RNA在人类疾病的调控中扮演了越来越重要的角色。包括肿瘤、神经系统疾病、心血管病的发生、以及参与免疫与代谢疾病调控、精子发育调控等,为开发疾病诊断标志物以及筛选新药靶标带来诸多新的方向。本次网络研讨会将围绕非编码RNA调控机理, 技术方法以及与疾病关系邀请名专家学者座谈,分享最新非编码RNA研究成果与经验,推动学科发展,促进转化医学及合作。

2018-05-03 课时:30分钟