如何在斑马鱼完整胚胎样本中使用RNAscope®技术进行研究
整胚原位杂交是在完整胚胎和组织中研究基因时空表达模式的有力工具。但现有的实验方法无法准确的直接检测RNA,而且操作耗时,结果和蛋白表达水平不一致。新一代原位定量杂交技术RNAscope®可以在斑马鱼整胚上实现快速高效、精准定量、特异性的多重RNA原位检测。该webinar由美国ACD公司(Advanced Cell Diagnostics, Inc., California, USA)邀请德国Münster大学细胞生物学研究所Erez Raz教授实验室两位研究员Azadeh Paksa 和 Theresa Gros介绍他们利用RNAscope®技术实现斑马鱼整胚上同时原位检测3个RNA分子进行三维荧光分析。详细介绍了实验操作过程,如何优化条件,降低信噪比以及RNAscope®技术相比传统原位杂交技术的绝对优势。
ACD公司提供RNAscope®原位定量杂交专利技术和产品,详细信息请访问ACD官网www.acdbio.com。更多中文资料请关注中国官方微信号(ACD_China)咨询。
文章题目: Simultaneous high-resolution detection of multiple transcripts combined with localization of proteins in whole-mount embryos. Gross-Thebing T, Paksa A, Raz E. BMC Biol. 2014 Aug 15;12(1):55.
人类彩色视觉及其变异性的研究
Jeremy Nathans (Johns Hopkins) Part 2: Human Color Vision and its Variations
In this set of lectures, Jeremy Nathans explores the molecular mechanisms within the retina that mediate the first steps in vision. The second lecture focuses on the photoreceptors that mediate human color vision and the molecular basis for the common inherited anomalies of color vision. See more at http://www.ibioseminars.org
研究寄生虫的质体,提供药物开发的新靶点
David Roos (U Penn) Part 2: The apicomplexan plastid
Antibiotics are effective because they kill bacteria without harming humans and other eukaryotes (organisms with cells that contain nuclei). So why are the eukaryotic parasites responsible for malaria and toxoplasmosis killed by drugs like clindamycin? Multidisciplinary studies integrating molecular genetics, cell biology, biochemistry, pharmacology and computational genomics reveal that such drugs target an unusual organelle. The "apicoplast" was acquired when an ancestral organism 'ate' a eukaryotic alga, and retained the algal plastid -- a relative of plant chloroplasts derived from a bacterial ancestor. Although no longer photosynthetic, the apicoplast is essential for parasite survival, providing new targets for drug development. See more at http://www.ibioseminars.org
从古希腊到21世纪,对多细胞生物中的再生能力的研究
Alejandro Sanchez-Alvarado (Stowers Institute for Medical Research) Part 1: History of Regeneration
Regeneration has fascinated philosophers and scientists since the beginning of history. The wide but uneven distribution of regenerative capacities among multicellular organisms is puzzling, and the permissive/inhibitory mechanisms regulating this attribute in animals remain a mystery. In the first part of this lecture, I will provide a general history of regeneration research from ancient Greece to the beginning of the 20th century. Key concepts will be introduced in their appropriate historical context, and many of the unanswered questions put forward by the problem of regeneration will be discussed.
Alejandro Sánchez Alvarado moved from the University of Utah to the Stowers Institute for Medical Research in 2011.
酵母蛋白分泌途径的研究
Randy Schekman (Berkeley) Part 1: Studying Protein Secretion in Yeast
Protein secretion is executed by a cellular pathway involving the delivery of membrane and soluble secretory proteins in vesicles that capture newly-synthesized proteins assembled in the endoplasmic reticulum (ER) and sorted in the Golgi apparatus. Vesicles fuse with the plasma membrane resulting in the discharge of soluble molecules to the cell exterior and integration of vesicle membrane proteins and lipids in the cell surface. Baker's yeast cells grow by vesicle fusion and secretion at the tip of the daughter bud. A genetic dissection of this process was performed with temperature sensitive conditional mutants blocked at one of several stations in the secretory pathway. See more athttp://www.ibioseminars.org
单分子分析方法研究运动蛋白
Molecular motor proteins are fascinating enzymes that power much of the movement performed by living organisms. In the first part of this lecture, I will provide an overview of the motors that move along cytoskeletal tracks (kinesin and dynein which move along microtubules and myosin which moves along actin). The main focus of this lecture is on how motor proteins work. How does a nanoscale protein convert energy from ATP hydrolysis into unidirectional motion and force production? What tools do we have at our disposal to study them? The first part of the lecture will focus on these questions for kinesin (a microtubule-based motor) and myosin (an actin-based motor), since they have been the subject of extensive studies and good models for their mechanisms have emerged. I conclude by discussing the importance of understanding motor proteins for human disease, in particular illustrating a recent biotechnology effort from Cytokinetics, Inc. to develop drugs that activate cardiac myosins to improve cardiac contractility in patients suffering from heart failure. The first part of the lecture is directed to a general audience or a beginning graduate class.
In the second part of this lecture, I will discuss our laboratories current work on the mechanism of movement by dynein, a motor protein about which we still know very little. This is a research story in progress, where some advances have been made. However, much remains to be done in order to understand how this motor works.
The third (last) part of the lecture is on mitosis, the process by which chromosomes are aligned and then segregated during cell division. I will describe our efforts to find new proteins that are important for mitosis through a high throughput RNAi screen. I will discuss how we technically executed the screen and then focus on new proteins that are we discovered that are involved in generating the microtubules that compose the mitotic spindle. I also discuss the medical importance of studying mitosis, including the development of drugs targeted to mitotic motor proteins, which are currently undergoing testing in clinical trials.
热点解析:基于高通量测序的微生物组研究
高通量测序技术的出现已经彻底改变了微生物的多样性研究。采用高通量测序手段,对栖息在多种多样的生态系统(例如肠道和极端环境)中的微生物群落进行检测,能够突破传统微生物分离培养和显微观察等手段对微生物检测的限制,同时研究不可培养或无法观察的未知微生物,统计微生物群体的多样性与丰度,分析微生物群体基因及功能,探求微生物与环境/宿主之间的关系,发掘和研究新的功能基因。微生物组研究有望改善人类健康、农业、生物能源和环境,也是目前发展最迅猛的研究领域之一。
流式技术在细胞生物学和癌症研究中的应用
细胞生物学研究与肿瘤研究是生命科学研究中的两个重要领域,也是流式细胞术应用非常成熟的两个领域。今天,来自BD生物科学的资深流式科学家Nil Emre博士将跟大家分享一下流式细胞术在细胞生物学以及肿瘤研究中具有怎样的重要作用。
从实验到分析——深度解析基于二代测序的LncRNA研究及应用
非编码RNA起初被认为是基因组转录的“垃圾”,而近年来,多个高水平的杂志以封面形式报道长链非编码RNA(long non-coding RNA,LncRNA)的重要性,由此LncRNAs引起了人们广泛的关注,已成为各研究领域的一颗新星。
本次讲座主要将从以下几个方面展开:
①LncRNA的方案设计及研究思路
②LncRNA的实验及分析流程
③LncRNA的案例解析
④LncRNA+mRNA+miRNA联合分析方案解析
⑤一类特殊的ncRNA——circular RNA
细胞遗传学技术新进展,助力临床研究与诊断
安捷伦公司是基因组学芯片和二代测序靶向序列捕获领域的全球领导者。安捷伦的染色体微阵列芯片,又称比较基因组杂交芯片(microarray-based comparative genomic hybridization,aCGH)在临床科研中,特别是产前诊断、儿科智力障碍与发育迟缓、胚胎植入前筛查和癌症等研究中具有广泛的应用,受到全球多家权威机构的推荐,已经成为全基因组染色体拷贝数分析的行业金标准。安捷伦的aCGH芯片是一种高分辨率的全基因组范围检测染色体拷贝数遗传( copy number variation)和杂合性缺乏( loss of heterozygosity)的强有力工具,它比传统的核型分析和BAC芯片提供更高的分辨率和更全面的覆盖度,能够帮助用户全面检测复杂基因组中更小的微缺失和微重复等染色体畸变,目前已经达到检测外显子级微缺失/重复的能力,并包括了用于 SNP 分析的探针,可用于检测 AOH(杂合性缺失)和 UPD(单亲源二体)。所有的实验操作非常快速和易用,可以显著提高异常核型的检出率。安捷伦的aCGH芯片于 2005 年推向市场,其使用60mer的长寡核苷酸探针,因而具有高特异性和灵敏度,其信噪比质量一直备受业界青睐。
除了多样的目录产品,安捷伦为全球的研究人员提供最灵活的定制化 aCGH芯片,尤其是与贝勒医学院和ISCA组织合作设计了多款 特别针对临床研究应用的aCGH芯片,贝勒的六款新型aCGH芯片的设计结合了贝勒医学院在遗传学研究领域数据丰富的技术专长和安捷伦强大的微阵列芯片制造能力,为癌症、产前和产后细胞遗传学研究带来新的创新发现工具。同时安捷伦还推出了针对试管婴儿胚胎植入前的单细胞非整倍体筛查芯片GenetiSure系列,为单细胞非整倍体研究提供了有力的工具。 对于细胞遗传学实验室,安捷伦提供aCGH芯片的完整解决方案,包括试剂、仪器和软件等。安捷伦的目录芯片和客户化定制芯片提供了卓越的灵敏度和灵活性,并为单细胞、羊水和口腔拭子等多种复杂样本进行了优化。