打开APP

多能干细胞与心脏病治疗:希望与挑战

心血管疾病是当今威胁人类健康最严重的疾病之一,其中由于冠状动脉病变引发的心肌梗死等缺血性心脏病和心梗致死的心肌细胞被纤维疤痕代替发生的心力衰竭是心血管疾病的主要致死病因。其高发病率、高致残率和高死亡率已成为我国重大健康问题,并且呈现发病率持续增加、年轻化等趋势,给我国家庭和社会带来越加沉重的负担。 缺血性心脏病和心力衰竭的药物和介入治疗可增强心脏本身供血机能和收缩功能,但由于无法修复坏死的心肌细胞和逆转纤维疤痕,只能延缓而不能阻止心衰的发生;心脏移植可根治末期心衰病人,然而受限于心脏供体缺乏。因此,寻找更有效、可广泛应用于治疗心衰尤其是使纤维疤痕转变为健康的心肌细胞的治疗手段是这一领域的前沿热点和探索目标。干细胞生物学为心肌再生医学开辟了广阔天地,也为解决心衰治疗这一难题展示了希望。近年干细胞生物学和医学研究的进展显示如下三类可形成新生心肌细胞的起始细胞具有临床应用的前景,即人多能干细胞(包括人胚胎干细胞和人诱导性多能干细胞),成体心脏来源的心脏前体细胞和重编程的成纤维细胞。在此将着重讨论从人多能干细胞获得不同分化阶段的心肌细胞的研究进展和有待进一步解决的问题和人多能干细胞源细胞移植治疗心肌梗死的研究现状和有待解决的的问题。

2014-09-25 课时:35分钟

杨瑞馥:POCT:个体化医疗时代和公共安全的需求与挑战

随着生物安全、食品安全、突发和新发疫情和自然灾害等问题日益突出,POCT在现场快速检测、确定病原等危害因子和制定有效预防措施中将发挥不可替代的作用。但是,POCT技术与中心实验室的检测手段不同,还存着管理、质量控制、培训、认证认可等问题。我们还需从POCT文化建设、管理机构确定和管理标准化以及质控、认证等的规范化等角度逐步解决。

2014-09-26 课时:24分钟

多能干细胞与心脏病治疗:希望与挑战

心血管疾病是当今威胁人类健康最严重的疾病之一,其中由于冠状动脉病变引发的心肌梗死等缺血性心脏病和心梗致死的心肌细胞被纤维疤痕代替发生的心力衰竭是心血管疾病的主要致死病因。其高发病率、高致残率和高死亡率已成为我国重大健康问题,并且呈现发病率持续增加、年轻化等趋势,给我国家庭和社会带来越加沉重的负担。 缺血性心脏病和心力衰竭的药物和介入治疗可增强心脏本身供血机能和收缩功能,但由于无法修复坏死的心肌细胞和逆转纤维疤痕,只能延缓而不能阻止心衰的发生;心脏移植可根治末期心衰病人,然而受限于心脏供体缺乏。因此,寻找更有效、可广泛应用于治疗心衰尤其是使纤维疤痕转变为健康的心肌细胞的治疗手段是这一领域的前沿热点和探索目标。

干细胞生物学为心肌再生医学开辟了广阔天地,也为解决心衰治疗这一难题展示了希望。近年干细胞生物学和医学研究的进展显示如下三类可形成新生心肌细胞的起始细胞具有临床应用的前景,即人多能干细胞(包括人胚胎干细胞和人诱导性多能干细胞),成体心脏来源的心脏前体细胞和重编程的成纤维细胞。

在此将着重讨论从人多能干细胞获得不同分化阶段的心肌细胞的研究进展和有待进一步解决的问题和人多能干细胞源细胞移植治疗心肌梗死的研究现状和有待解决的的问题。

2014-10-27 课时:35分钟

肿瘤血管生成研究的前景和挑战

在肿瘤研究领域,随着测序技术的飞速跨越发展,纳米、信息科学和微尺度科学等技术的广泛应用,使我们对肿瘤的生物学行为产生了更加系统、全面、深刻的认识,也有效推动了肿瘤诊断治疗产品和技术的不断突破。在肿瘤研究不断获得令人瞩目新成果的基础上,从临床到基础,再到临床的肿瘤转化医学研究也获得了长足的进步,造就了肿瘤个性化治疗的临床实践模式势必逐渐替代传统肿瘤疗法的趋势。

2015-02-27 课时:40分钟

聚焦肿瘤:抗体药的挑战

肿瘤的治疗需要有侵略性的而又针对性的治疗。一些肿瘤药物毒性太强,因为它们在损伤肿瘤细胞的同时也会损伤正常的细胞。所以研究人员正在想方设法地确保药物只针对杀死肿瘤细胞。

一种方案是将药物和肿瘤细胞表达的蛋白的特异性抗体相偶联,这类药物被称为抗体药。

现阶段不少于20来个抗体药被用于临床来治疗乳腺癌和淋巴癌等肿瘤,而且研究人员正在研发更多的药物。但是这需要消耗数十年来发现合适的药物、抗体和连接方式,并且要确保合适的剂量。

本动画中,我们来听听抗体药的挑战

2015-03-02 课时:4分钟

干细胞治疗疑难肝病:进展与挑战

来自解放军第三〇二医院的徐若男代表王福生教授做了主题为"干细胞治疗疑难肝病:进展与挑战"的报告。

2015-07-03 课时:22分钟

陶剑虹:生物类似物在中国的机遇与挑战

陶所长从3个方面做了讲诉:
1.全球生物医药创新概述
2.中国生物类似物市场进展
3.生物类似物的机遇与挑战

2015-07-08 课时:63分钟

杨黄恬:干细胞与心肌修复:进展与挑战

心血管疾病是当今威胁人类健康最严重的疾病之一,其中由于心肌梗死引起心肌细胞丢失和瘢痕形成是导致心力衰竭的主要原因之一,其高发病率、高致残致死率已成为我国重大健康问题,并且呈现发病人群持续增加、年轻化等趋势,给我国家庭和社会带来沉重的负担。

虽然传统药物治疗、介入治疗和手术治疗等方法的应用改善了心肌梗死患者的预后,但无法修复坏死心肌细胞和逆转纤维疤痕, 只能延缓而不能阻止心衰的发生。因此寻找更有效的减轻心梗后细胞损伤与死亡、改善病变心肌血供、重建心肌的治疗手段是这一领域的前沿热点和探索目标。

近年的大量研究提示干细胞在治疗心梗后心肌病中的应用价值,但其临床应用仍有待开展一系列的基础和临床前的研究。在此将讨论近来在干细胞/祖细胞定向分化和动物与人心梗后心肌病治疗的研究进展和走向临床应用有待解决的问题。

2015-07-31 课时:40分钟

HIV:免疫工程的大挑战 - David Baltimore P3

本视频由科普中国和生物医学大讲堂出品

David Baltimore (Caltech) Part 3: HIV: The Grand Challenge - Engineering Immunity

Lecture Overview:
In this set of lectures, I describe the threat facing the world from the human immunodeficiency virus (HIV) and a bold proposal on how we might meet the challenge of eliminating this disease by engineering the immune system.

In part 1, I provide a broad introduction to viruses, describing their basic properties and my own history of studying the replication of RNA viruses which led to the discovery of reverse transcriptase. I also illustrate the distinguishing features of equilibrium viruses (e.g. the common cold) that have adapted to co-exist with their host and non-equilibrium viruses (e.g. HIV) that have recently jumped from another species, are not adapted to the new host, and which can lead to disastrous outcomes (e.g. loss of immune function with potential lethality in the case of HIV).

In part 2, I describe the growing health problem that is facing the world with the spread of HIV and the limitations of current drug therapies and vaccine strategies. We need new ideas for tackling this problem. Here and in the next segment, I describe bold strategies of using gene therapy to conquer HIV, The approach that I describe in this segment involves gene therapy to produce short hairpin RNAs (siRNA) that target the destruction of a critical co-receptor of HIV, which the viruses that needs to infect cells. I discuss initial proof-of-principle experiments that suggest this approach might be feasible and the next steps needed to develop this idea into a real therapy.

In this last segment, I describe another gene therapy strategy for HIV in which we propose to develop antibody-like proteins that can be expressed by a patient's B cells and will target the HIV virus for destruction. To achieve this objective, hematopoietic (blood) stem cells must to be targeted with the gene, which will ultimately develop into B cells that express the therapeutic molecule. The ultimate goal is to produce a life-long supply of anti-HIV neutralizing antibodies. In this lecture, I describe the molecular methods underlying this strategy and a development path from proof-of-principle studies in mouse to safe trials in humans. This project receives funding from the Bill and Melinda Gates Foundation.

Speaker Bio: After serving as President of the California Institute of Technology for nine years, in 2006 David Baltimore was appointed President Emeritus and the Robert Andrews Millikan Professor of Biology. Born in New York City, he received his B.A. in Chemistry from Swarthmore College in 1960 and a Ph.D. in 1964 from Rockefeller University, where he returned to serve as President from 1990-91 and faculty member until 1994.

For almost 30 years, Baltimore was a faculty member at Massachusetts Institute of Technology. While his early work was on poliovirus, in 1970 he identified the enzyme reverse transcriptase in tumor virus particles, thus providing strong evidence for a process of RNA to DNA conversion, the existence of which had been hypothesized some years earlier. Baltimore and Howard Temin (with Renato Dulbecco, for related research) shared the 1975 Nobel Prize in Physiology or Medicine for their discovery, which provided the key to understanding the life-cycle of HIV. In the following years, he has contributed widely to the understanding of cancer, AIDS and the molecular basis of the immune response. His present research focuses on control of inflammatory and immune responses as well as on the use of gene therapy methods to treat HIV and cancer in a program called "Engineering Immunity".

Baltimore played an important role in creating a consensus on national science policy regarding recombinant DNA research. He served as founding director of the Whitehead Institute for Biomedical Research at MIT from 1982 until 1990. He co-chaired the 1986 National Academy of Sciences committee on a National Strategy for AIDS and was appointed in 1996 to head the National Institutes of Health AIDS Vaccine Research Committee.

In addition to receiving the Nobel Prize, Baltimore's numerous honors include the 1999 National Medal of Science, election to the National Academy of Sciences in 1974, the Royal Society of London, and the French Academy of Sciences. For 2007/8, he is President of the AAAS. He has published more than 600 peer-reviewed articles.

2015-12-14 课时:19分钟