打开APP

Stefan Larsson:医生们可以互相学习

不同医院的不同手术有着不同的结果。但是病人不知道数据, 所以使得选外科医生成为了一个高风险的猜测游戏。

史帝芬·拉森(Stefan Larsson)研究了当医生开始衡量并分享他们的髋关节手术的结果时(比如说什么是最有效的方法)会发生的情况。

如果医生们可以相互学习并形成一个反馈循环,医疗保健会不会变得更好、更便宜?

2015-01-09 课时:7分钟

学习新版《药品生产质量管理规范》强化体细胞治疗的质控

2011年卫生部发布了97号令,有关新版《药品生产质量管理规范》(以下简称药品GMP)。它是历经5年修订、两次公开征求意见而完成的。新版药品GMP吸收了国际先进经验,结合我国国情,按照"软件硬件并重"的原则,贯彻质量风险管理和药品生产全过程管理的理念,更加注重科学性,强调指导性和可操作性,达到了与世界卫生组织药品GMP的一致性。

体细胞的制备与新版《药品生产质量管理规范》或制药有什么关系?因为体外进行细胞培养(未经培养的血细胞、骨髓细胞不在内),就要使用培养基、细胞因子等,需要GMP净化间,需要有标准操作程序(SOP)和产品的质控,这些和制药没有本质上的区别。经过培养的细胞可能被活化、或改变性质和功能,因此,终产品需要证明其安全性和有效性。因此,学习药品GMP对于体细胞制剂的质控是十分必要的。

2011年底我国卫生部国家食品药品监督管理局发布了卫办科教涵1177号"关于开展干细胞临床研究和应用自查自纠工作的通知"。已叫停未经卫生部和SFDA批准的干细胞临床研究和应用。这也是我国开展体细胞临床研究的良好开端。体细胞的研究和应用仅仅是开始,问题较多,但其发展潜力很大,尤其在肿瘤,传染病,以及再生医学方面的应用前景广阔。相信我国的科技工作者和管理者携手,加速科学的体细胞临床研究,一定会造福于百姓,并走到国际的前列。

2015-01-19 课时:32分钟

大脑如何学习辨识物体

帕旺辛哈博士对大脑中视觉系统的发展进行了开创性的研究。辛哈与他的团队为先天失明的儿童提供免费的视力恢复治疗,并且学习他们的大脑如何处理视觉相关的数据。这项工作为神经学,工程学,甚至自闭症的研究提供了真知卓见。

2015-01-22 课时:7分钟

控制声乐学习行为的大脑通路 - Erich Jarvis P1

本视频由科普中国和生物医学大讲堂出品

Erich Jarvis (Duke/HHMI) Part 1: Convergent behavior and brain pathways

In Part 1, Jarvis explains that vocal learning is the ability to hear a sound and repeat it. Only 5 groups of mammals (including humans) and 3 groups of birds (parrots, hummingbirds and songbirds) are capable of vocal learning. Jarvis and his lab members imaged changes in gene expression in bird's brains after singing. They found that hummingbirds, songbirds and parrots each have pathways in specific areas of the brain that are not found in non-vocal learning birds. Interestingly, analogous networks exist in the human brain but not in non-vocal learning monkeys.

In Part 2, Jarvis proposes a mechanism by which vocal learning may have evolved. He suggests that the brain areas that control vocal learning are the result of a duplication of a pre-existing neural circuit that controls motor movement. A similar duplication event may have occurred during the evolution of humans with the result that both humans and Snowball, a cockatoo, can sing and dance to a beat!

In Jarvis' third talk, he demonstrates that the brain pathways necessary for vocal learning are associated with the expression of particular axonal guidance genes. He also proposes that the evolutionary events responsible for the development of vocal learning may be a general mechanism for the development of other complex behavioral traits.

2015-12-14 课时:27分钟

声乐学习起源的肌动模型 - Erich Jarvis P2

本视频由科普中国和生物医学大讲堂出品

Erich Jarvis (Duke/HHMI) Part 2: Motor theory of vocal learning origin

In Part 1, Jarvis explains that vocal learning is the ability to hear a sound and repeat it. Only 5 groups of mammals (including humans) and 3 groups of birds (parrots, hummingbirds and songbirds) are capable of vocal learning. Jarvis and his lab members imaged changes in gene expression in bird's brains after singing. They found that hummingbirds, songbirds and parrots each have pathways in specific areas of the brain that are not found in non-vocal learning birds. Interestingly, analogous networks exist in the human brain but not in non-vocal learning monkeys.

In Part 2, Jarvis proposes a mechanism by which vocal learning may have evolved. He suggests that the brain areas that control vocal learning are the result of a duplication of a pre-existing neural circuit that controls motor movement. A similar duplication event may have occurred during the evolution of humans with the result that both humans and Snowball, a cockatoo, can sing and dance to a beat!

In Jarvis' third talk, he demonstrates that the brain pathways necessary for vocal learning are associated with the expression of particular axonal guidance genes. He also proposes that the evolutionary events responsible for the development of vocal learning may be a general mechanism for the development of other complex behavioral traits.

2015-12-14 课时:12分钟

声乐学习与特定的轴突导向基因的表达有关 - Erich Jarvis P3

本视频由科普中国和生物医学大讲堂出品

Erich Jarvis (Duke/HHMI) Part 3: Genes specialized in vocal learning circuits In Part 1, Jarvis explains that vocal learning is the ability to hear a sound and repeat it. Only 5 groups of mammals (including humans) and 3 groups of birds (parrots, hummingbirds and songbirds) are capable of vocal learning. Jarvis and his lab members imaged changes in gene expression in bird's brains after singing. They found that hummingbirds, songbirds and parrots each have pathways in specific areas of the brain that are not found in non-vocal learning birds. Interestingly, analogous networks exist in the human brain but not in non-vocal learning monkeys.

In Part 2, Jarvis proposes a mechanism by which vocal learning may have evolved. He suggests that the brain areas that control vocal learning are the result of a duplication of a pre-existing neural circuit that controls motor movement. A similar duplication event may have occurred during the evolution of humans with the result that both humans and Snowball, a cockatoo, can sing and dance to a beat!

In Jarvis' third talk, he demonstrates that the brain pathways necessary for vocal learning are associated with the expression of particular axonal guidance genes. He also proposes that the evolutionary events responsible for the development of vocal learning may be a general mechanism for the development of other complex behavioral traits.

2015-12-14 课时:17分钟

大脑学习

为什么“千错万错,马屁不错”?为什么电子游戏和吗啡一样易上瘾?为什么失恋会流鼻涕?陈巍老师以投篮、拍马屁讨喜、抽鸦片上瘾、抑郁症、恋爱悲与喜、沉溺电子游戏为例,生动形象的讲解了人脑的学习,让“树突”、“轴突”、“神经元”、“突触”......不再生涩难懂。

2016-07-19 课时:11分钟