打开APP

Karen Dell: iBiology:Meet the world's best biologists through the Internet

Karen Dell来自美国细胞生物学学会,她将简述通过iBiology来获取生物学学习和交流的资源。

2015-04-16 课时:24分钟

Erich Gnaiger:Life Style and Mitochondrial Competence – Modern Drugs for T2 Diabetes in Aging and Degenerative Diseases.

D. Swarovski Research Laboratory (Mitochondrial Physiology), Dept. General, Visceral and Transplant Surgery, Innsbruck Medical University; and OROBOROS INSTRUMENTS, Innsbruck, Austria. - Email: erich.gnaiger@oroboros.at

The contribution of mitochondrial dysfunction to the etiology of T2 diabetes and a range of preventable metabolic diseases is the subject of intensive current research with world-wide health implications.

Recently these investigations gained depth and scope by technological advances for diagnosis of mitochondrial function by comprehensive OXPHOS analysis using high-resolution respirometry [1,2]. Fundamental questions of a causal relationship, however, between compromised mitochondrial function and development of T2 diabetes remain to be resolved [3,4] to optimize prevention and treatment of insulin resistance.

For preventable diseases such as T2 diabetes, the evolutionary background of mitochondrial competence provides a solid basis for improved and broad application of a well established modern drug, mtLSD.

Post-industrial societies are characterized by a high-energy input lifestyle with diminished physical activity and high incidence of non-transmittable diseases, in comparison to human populations where physical work is essentially important for sustaining life and in which degenerative diseases (T2 diabetes, various cancers, Alzheimer's) are essentially absent [5]. The capacity of oxidative phosphorylation (OXPHOS) is increased or maintained high by a life style involving endurance exercise and strength training [6].

Life style changes from the age of 20-30 years to the elderly, but is subject to change and intervention. Depending on group selection in cross-sectional studies, OXPHOS capacity declines from the age of 20-30 years [7,8], or is independent of age up to 80 years [9,10].

Independent of age, there is a strong decline of OXPHOS capacity in human vastus lateralis from BMI of 20 to 30 [1]. At a BMI >30, a threshold OXPHOS capacity is reached in human v. lateralis that may be characteristic of a low-grade inflammatory state (‘mitochondrial fever’).

Onset of degenerative diseases (T2 diabetes, neuromuscular degeneration, various cancers) and mitochondrial dysfunction interact in an amplification loop progressing slowly with age, such that cause and effect of mitochondrial dysfunction cannot be distinguished. Diminished antioxidant capacity at low mitochondrial density is an important mechanistic candidate in the state of mitochondrial fever.

For implementing a life style supporting mitochondrial competence and preventing degenerative diseases in modern societies, we need (1) extended research programmes focused on the causative link between mitochondrial competence and effective prevention of degenerative diseases, (2) educational programmes on mitochondrial physiology targeted at general practitioners, teachers and the society at large, (3) cooperation of health care and insurance organizations to support preventive life style activities, and (4) do not miss any opportunity in taking the lead in living the mtLife Style Drug (mtLSD).

2015-05-18 课时:47分钟

Pseudomonas aeruginosa生存与肠道反应

当我们想到细菌的时候,我们真的不去想这些痛苦当他们为了保住自己的家园而奋斗的时候。Michele LeRoux博士解释了细菌如何相互影响当他们竞争环境资源。 她以六型分泌系统(T6SS),一些细菌的膜中的蛋白质复合物这是用来对抗和战胜其他细菌。铜绿假单胞菌的研究,她发现,当这些细菌和其他细菌的遭遇,他们能够增加细胞膜的活性和数量。她注意到铜绿假单胞菌能感觉到兄弟姐妹的手足细菌的死亡,这将激活他们的防御系统。这种新的免疫反应机制在细菌中,提供对有害线索的细菌反应的洞察力。

2016-11-23 课时:30分钟