Immunoblot Analysis Sean Gallagher(UVP,LLC)and Deb Chakravart(Proteomic Center)
Immunoblot Analysis Sean Gallagher(UVP,LLC)and Deb Chakravart(Proteomic Center)
布鲁斯·艾伯茨:Learning from Failure
Alberts declares "Success doesn't really teach you much, failure teaches you a lot." Speaking from his personal experience, Alberts asserts that all scientists make mistakes and suffer setbacks but learning from those failures is what allows one ultimately to succeed.
Protein synthesis: mRNA surveillance by the ribosome
Rachel Green (Johns Hopkins U., HHMI) 2: Protein synthesis: mRNA surveillance by the ribosome
Talk Overview:
In her first talk, Green provides a detailed look at protein synthesis, or translation. Translation is the process by which nucleotides, the “language” of DNA and RNA, are translated into amino acids, the “language” of proteins. Green begins by describing the components needed for translation; mRNA, tRNA, ribosomes, and the initiation, elongation, and termination factors. She then explains the roles of these players in ensuring accuracy during the initiation, elongation, termination and recycling steps of the translation process. By comparing translation in bacteria and eukaryotes, Green explains that it is possible to determine which components and steps are highly conserved and predate the divergence of different kingdoms on the tree of life, and which are more recent adaptations.
Green’s second talk focuses on work from her lab investigating how ribosomes detect defective mRNAs and trigger events leading to the degradation of the bad RNA and the incompletely translated protein product and to the recycling of the ribosome components. Working in yeast and using a number of biochemical and genetic techniques, Green’s lab showed that the protein Dom34 is critical for facilitating ribosome release from the short mRNAs that result from mRNA cleavage. Experiments showed that Dom34-mediated rescue of ribosomes from short mRNAs is an essential process for cell survival in higher eukaryotes.
Speaker Biography:
Rachel Green received her BS in chemistry from the University of Michigan. She then moved to Harvard to pursue her PhD in the lab of Jack Szostak where she worked on designing catalytic RNA molecules and investigating their implications for the evolution of life. As a post-doctoral fellow at the University of California, Santa Cruz, Green began to study how the ribosome translates mRNA to protein with such accuracy.
Currently, Green is a Professor of Molecular Biology and Genetics at the Johns Hopkins School of Medicine and an Investigator of the Howard Hughes Medical Institute. Research in her lab continues to focus on the ribosome and factors involved in the fidelity of eukaryotic and prokaryotic translation.
Green is the recipient of a Johns Hopkins University School of Medicine Graduate Teaching Award as well as the recipient for numerous awards for her research. She was elected to the National Academy of Sciences in 2012.
PerkinElmer Company Overview
At PerkinElmer we're taking action to improve the health and safety of people and the environment. We're committed to transforming risk into safety, mystery into knowledge and ideas into action for healthier today and even better tomorrow. We are committed to delivering solutions that improve our customers' outcomes, advance human and environmental health technologies and, deliver shareholder value. Every day, we work together to ensure the way we do business is as meaningful as the solutions we provide.
Introducing the EnSight™ Multimode Plate Reader from PerkinElmer
PerkinElmer's EnSight Multimode Plate Reader is the first benchtop system to offer well-imaging alongside label-free and labeled detection technologies - for a whole new perspective on your research. For more information, please visit the EnSight website - http://bit.ly/T4IDPh
Pre-Clinical In Vivo Imaging Solutions from PerkinElmer
PerkinElmer offers a comprehensive portfolio of pre-clinical in vivo imaging systems and reagents. Find out more at http://bit.ly/1mnyvwF. Our pre-clinical imaging instruments include our highly published (over 4000 citations) IVIS Optical imaging systems, Quantum FX microCT which delivers high quality images at an x-ray dose low enough for longitudinal studies, and x-ray systems. We also offer a large portfolio of in vivo imaging reagents for most areas of research including cancer, infectious disease, stem cell, inflammation, toxicology/drug safety and more.
People coming together makeing a difference
People coming together makeing a difference
Connectomics: Seeking neural circuit motifs
人类的大脑是非常复杂的,更大的结构和功能的多样性比其他器官和这种复杂性是确定的按某人的经验和某人的基因。 在报告1部分,Lichtman解释了如何映射的关系在大脑(神经连接)可能会导致一个更好的理解大脑的功能。
Neuromuscular Connectomics
Part 2:使用不同颜色的转基因小鼠, 荧光标记的蛋白质在每个神经元(“彩虹”老鼠), Lichtman和他的同事们能够遵循的形成, 在小鼠发育过程中的神经肌肉接头的破坏。这项工作是2部分的重点。
Brain Connectomics
在第3部分,Lichtman询问是否有一天它可能地图上所有的神经连接在大脑中。他描述了允许他的技术进步他的同事们开始这一努力,以及巨大的挑战破译大脑的连接体。