sRNA Induces the Large-scale Transdetermination of MesenchyMal Stem Cells into Hematopoietic Stem Cells in Human.
MesenchyMal stem cells (MSCs) can differentiate into cells of bone, endothelium, adipose tissue, cartilage, muscle, and brain. However, whether they can transdeterminate into hematopoietic stem cells (HSCs) remains unsolved. We report here that a subpopulation of human MSCs that are CD44+,CD29+, CD105+, CD166+,CD133-,CD34- could differentiate into hematopoietic stem cells (CD150+/CD133+/CD34+) and their descending blood cells in vitro, when transfected with new endogenous shRNAs The sRNA was high-effectively delivered into MSCs by a novel peptide means. These induced MSC-HSCs could form different types of hematopoietic colonies as nature-occurring HSCs did. Upon transplantation into sublethally irradiated NOD/SCID mice, these MSC-HSCs engrafted and differentiated into all hematopoietic lineages such as erythrocytes, lymphocytes, myelocytes and thrombocyte. More importantly, these induced HSCs could successfully engraft and effectively function in patients with severe aplastic anemia. Furthermore, we demonstrated the first evidence that the transdetermination of MSCs was induced by acetylation of histone proteins and activation of many transcriptional factors. Together, our findings identify the sRNAs that dictates a directed differentiation of MSCs toward HSCs and open up a new source for HSCs used for the treatment of blood diseases and artificial stem cell-made blood.
sMall RNA-seq - 陈巍学基因(9)
本期课程介绍:
1、sMall RNA建库测序的方法;
2、sMall RNA测序数据的生物信息学分析(A、表达量差异分析;B、聚类分析;C、GO分析;D、KEGG Pathway分析);
3、血清和血浆micro RNA测序的意义、和样本准备
Interplays between MesenchyMal Stem Cells and Immune Responses
MesenchyMal stem cells (MSCs) exist in almost all tissues and are crucial in maintaining the cellular homeostasis of multicellular organisms. They provide the ultimate cell source for tissue repair and regeneration. Under pathological conditions, these cells are awakened, activated, and mobilized to damaged tissue sites. Since tissue damages are often accompanied by inflammatory factors, from both innate immune response and adaptive immune response, it is sensible that MSCs delicately interact with inflammatory factors at the sites of tissue damages.
Depending on the type and persistence of the inflammatory factors, the activated MSCs could lead either to complete or partial tissue repair, or to chronic inflammation and further tissue damage, such as cancer and fibrosis. Indeed, recent studies have shown that there is a bidirectional interaction between MSCs and inflammatory cells and cytokines. However, much information of this information remains to be elucidated. Further investigations in this newly emerging exciting research area will undoubtedly lead to better understanding of pathogenesis of various diseases and novel treatment strategies.
Genetic Analysis of MamMalian Cricadian Clocks
昼夜节律是一个适应的24小时的一天,我们的经验。一个历史性的概述,Takahashi开始他的演讲如何控制生物钟的基因在drosophi首次发现和克隆旅游所需的力量,以确定在小鼠时钟基因。他还介绍了实验,导致实现人体内的所有细胞都有一个生物钟,而不仅仅是在大脑中的细胞。在这部分讲座中,Takahashi解释说,视交叉上核(SCN)在大脑中产生一种昼夜节律的体温波动的体温反过来,信号到外周组织。热休克因子1是负责的信号分子之一通信温度信息和复位外周时钟。