ReGenerative medicine for brain and nerve repair
We isolated and propagated neural stem cells from the exposed brain tissue of the patients with open brain trauma, and then implanted neural stem cells with MRI-guided stereotactic device for the patients. Within 2-years follow-ups, the patients were investigated for functional recovery. Contrast to the case control group, implantation of neural stem cells was associated with a significant improvement in patient's neurological function. Investigations of stem cell therapy have required analysis of the fate and migration of implanted neural stem cells. Here, We demonstrate the feasibility of labeling human neural stem cells and retinal stem cells with nanoparticle and tracking of implanted cells in monkey and human central nervous system (CNS). This data demonstrates the possibility of stem cell therapy in CNS and collectively provide necessary foundation for overcoming challenges to the enhancement of translational reGenerative medicine of brain and optic nerve injury.
ReGenerative medicine for brain and nerve repair
We isolated and propagated neural stem cells from the exposed brain tissue of the patients with open brain trauma, and then implanted neural stem cells with MRI-guided stereotactic device for the patients. Within 2-years follow-ups, the patients were investigated for functional recovery. Contrast to the case control group, implantation of neural stem cells was associated with a significant improvement in patient's neurological function. Investigations of stem cell therapy have required analysis of the fate and migration of implanted neural stem cells. Here, We demonstrate the feasibility of labeling human neural stem cells and retinal stem cells with nanoparticle and tracking of implanted cells in monkey and human central nervous system (CNS). This data demonstrates the possibility of stem cell therapy in CNS and collectively provide necessary foundation for overcoming challenges to the enhancement of translational reGenerative medicine of brain and optic nerve injury.
Simultaneous quantification of 47 Gene expression in FFPE samples by a novel PCR-free approach
基因表达(Gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。差别基因表达(differential Gene expression)指细胞分化过程中,奢侈基因按一定顺序表达,表达的基因数约占基因总数的5%~10%。
Erich Gnaiger:Life Style and Mitochondrial Competence – Modern Drugs for T2 Diabetes in Aging and DeGenerative Diseases.
D. Swarovski Research Laboratory (Mitochondrial Physiology), Dept. General, Visceral and Transplant Surgery, Innsbruck Medical University; and OROBOROS INSTRUMENTS, Innsbruck, Austria. - Email: erich.gnaiger@oroboros.at
The contribution of mitochondrial dysfunction to the etiology of T2 diabetes and a range of preventable metabolic diseases is the subject of intensive current research with world-wide health implications.
Recently these investigations gained depth and scope by technological advances for diagnosis of mitochondrial function by comprehensive OXPHOS analysis using high-resolution respirometry [1,2]. Fundamental questions of a causal relationship, however, between compromised mitochondrial function and development of T2 diabetes remain to be resolved [3,4] to optimize prevention and treatment of insulin resistance.
For preventable diseases such as T2 diabetes, the evolutionary background of mitochondrial competence provides a solid basis for improved and broad application of a well established modern drug, mtLSD.
Post-industrial societies are characterized by a high-energy input lifestyle with diminished physical activity and high incidence of non-transmittable diseases, in comparison to human populations where physical work is essentially important for sustaining life and in which deGenerative diseases (T2 diabetes, various cancers, Alzheimer's) are essentially absent [5]. The capacity of oxidative phosphorylation (OXPHOS) is increased or maintained high by a life style involving endurance exercise and strength training [6].
Life style changes from the age of 20-30 years to the elderly, but is subject to change and intervention. Depending on group selection in cross-sectional studies, OXPHOS capacity declines from the age of 20-30 years [7,8], or is independent of age up to 80 years [9,10].
Independent of age, there is a strong decline of OXPHOS capacity in human vastus lateralis from BMI of 20 to 30 [1]. At a BMI >30, a threshold OXPHOS capacity is reached in human v. lateralis that may be characteristic of a low-grade inflammatory state (‘mitochondrial fever’).
Onset of deGenerative diseases (T2 diabetes, neuromuscular deGeneration, various cancers) and mitochondrial dysfunction interact in an amplification loop progressing slowly with age, such that cause and effect of mitochondrial dysfunction cannot be distinguished. Diminished antioxidant capacity at low mitochondrial density is an important mechanistic candidate in the state of mitochondrial fever.
For implementing a life style supporting mitochondrial competence and preventing deGenerative diseases in modern societies, we need (1) extended research programmes focused on the causative link between mitochondrial competence and effective prevention of deGenerative diseases, (2) educational programmes on mitochondrial physiology targeted at General practitioners, teachers and the society at large, (3) cooperation of health care and insurance organizations to support preventive life style activities, and (4) do not miss any opportunity in taking the lead in living the mtLife Style Drug (mtLSD).
Generating B-lymphoblastoid cell lines using Epstein Barr virus transformation.
Generating immortalized B-lymphoblastoid cell lines via Epstein Barr virus transformation using the B95-8 EBV-infected and producing marmoset cell line.
Clock Genes,Clock Cells and Clock Circuits
昼夜节律是一个适应的24小时的一天,我们的经验。一个历史性的概述,Takahashi开始他的演讲如何控制生物钟的基因在drosophi首次发现和克隆旅游所需的力量,以确定在小鼠时钟基因。他还介绍了实验,导致实现人体内的所有细胞都有一个生物钟,而不仅仅是在大脑中的细胞。在第1部分,Takahashi解释说,视交叉上核(SCN)在大脑中产生一种昼夜节律的体温波动的体温反过来,信号到外周组织。热休克因子1是负责的信号分子之一通信温度信息和复位外周时钟。
Clock Genes,Clock Cells and Clock Circuits
在第2部分,Takahashi介绍了如何穿越不同遗传B许多老鼠背景允许他的实验室识别几个基因通过不同的机制影响时钟基因系统的输出。与晶体结构Takahashi开始他的演讲的最后一部分的Bmal和时钟,时钟基因的转录激活因子的两个中心。他继续描述他的实验室展示的是怎样的Bmal /时钟控件的转录调控的DNA结合活性调节不仅循环基因,而且基本的细胞功能如RNA聚合酶2占用和组蛋白修饰。
Genetic Analysis of Mammalian Cricadian Clocks
昼夜节律是一个适应的24小时的一天,我们的经验。一个历史性的概述,Takahashi开始他的演讲如何控制生物钟的基因在drosophi首次发现和克隆旅游所需的力量,以确定在小鼠时钟基因。他还介绍了实验,导致实现人体内的所有细胞都有一个生物钟,而不仅仅是在大脑中的细胞。在这部分讲座中,Takahashi解释说,视交叉上核(SCN)在大脑中产生一种昼夜节律的体温波动的体温反过来,信号到外周组织。热休克因子1是负责的信号分子之一通信温度信息和复位外周时钟。