打开APP

研究揭示三木通果肉软化的分子机制

近日,中国农业科学院麻类研究所南方特色果蔬遗传育种创新团队通过串联质谱技术研究了三叶木通不同时期果肉成熟与软化的特性,挖掘了三叶木通果肉软化性状的潜在基因,为调控其成熟软化途径提供了新的思路。研究成果发表在《营养前沿(Frontiers in Nutrition)》上。据栾明宝研究员介绍,三叶木通果肉软化是影响果实采后品质的关键因素。过度软化极易造成果实腐烂

2021-07-23

Commun Biol:基因C9orf72在肌萎缩性脊髓侧所硬化症和额痴呆发病过程中或扮演着关键角色

2021年7月4日 讯 /生物谷BIOON/ --肌萎缩性脊髓侧所硬化症(ALS,amyotrophic lateral sclerosis)和额颞叶痴呆(FTD,fronto-temporal dementia)最常见的遗传原因就是C9orf72基因内所发生六核苷酸的重复扩张,C9orf72基因的mRNA和蛋白水平下降往往存在于ALS和FTD患者中,但C9

2021-07-04

The Plant Cell:研究阐明了生长素在调控水稻旗夹角中的作用机制

  近日,上海交通大学生命科学技术学院张大兵教授团队在植物学著名期刊The Plant Cell发表了题目为“AUXIN RESPONSE FACTOR 6 and 17 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis o

2021-07-13

Science:发现大脑极区中的一类神经元让哺乳动物快速识别出熟悉的面孔

2021年7月6日讯/生物谷BIOON/---科学家们长期以来一直在徒劳地寻找一类脑细胞,以解释当我们看到一张非常熟悉的面孔(比如祖母的面孔)时,我们会感到本能的一闪而过的识别。但是,人们提出的“祖母神经元(grandmother neuron)”---单个位于感官知觉和记忆交叉口的细胞,能够将一张重要的面孔置于众人之上---仍然难以找到。如今,一项新的研究

2021-07-06

Journal of Genetics and Genomics:单细胞分辨率绘制水稻幼苗和根的转录组图谱

  水稻作为重要的粮食作物,为全球一半以上的人口提供主粮;同时,水稻作为单子叶模式植物,其个体发育与细胞分化受到了科研人员持续和广泛的关注。细胞功能的分化常常可以体现为基因表达的差异。新兴的单细胞转录组测序技术使高通量探究细胞的功能分化成为可能。绘制水稻全苗单细胞转录图谱将为单子叶植物的研究工作提供关键的基础资源,为理解植物发育的转录调控

2021-06-24

灯台生物碱新药系统研究取得进展

近年来,中国科学院昆明植物研究所在灯台叶生物碱新药系统研究中取得系列进展。2019年,科研人员完成灯台叶总生物碱完成IIa临床试验,显示了其初步的临床有效性。随后,昆明植物所协助企业完成三批合格灯台叶总生物碱的中试生产,围绕灯台叶研究发表了下列论文:药理药效研究:昆明植物所博士赵云丽等揭示出灯台叶生物碱体外能明显抑制H1N1、RSV和HSV-1病毒的复制及乙

2021-06-08

草生物与Dynavax宣布新冠候选疫苗全球II/III期临床试验“SPECTRA” 完成首批志愿者接种

  专注于针对世界严重疾病研发创新型生物疗法和疫苗的全球临床阶段生物制药公司 — 三叶草生物制药有限公司(以下简称“三叶草生物”)和专注于开发和商业化新型疫苗的生物制药公司 — Dynavax Technologies Corporation公司(以下简称“Dynavax”)宣布三叶草生物的新冠候选疫苗全球II/III期临床试验项目“SP

2021-03-25

植物际微生物溯源研究取得进展

  植物叶际是人类居住星球上最重要的微生物储存库之一。植物叶际微生物是植物微生物组的重要组成部分,其在促进植物生长、保护植物不受外部病原菌侵害及参与植物碳氮循环中起重要作用。虽然叶际微生物的多样性及丰度远不及植物根际及土壤环境,但是定殖在植物叶际上的微生物量也较多。空气微生物被认为是叶际微生物的重要来源之一。在微生物到达叶际后,其可通过叶

2021-01-20

草生物发布“S-三聚体”新冠候选疫苗I期积极结果

 I期临床研究数据表明,三叶草生物的“S-三聚体”重组亚单位新冠候选疫苗分别在与GSK预防疾病大流行的疫苗佐剂系统或Dynavax的CpG 1018加铝佐剂系统联合使用下,在150 名成年和老年受试者中诱导出强烈的中和免疫应答。三叶草生物的新冠候选疫苗被证实具有良好的安全性和耐受性,在2-8摄氏度下具有长期稳定性,适合在全球范围内分发。由流行病预防

2020-12-07

浙大恭银教授组纳米孔测序从头组装高质量麦蛾茧峰基因组

 2020年7月14日,浙江大学叶昕海博士、叶恭银教授、李飞教授和贝纳基因共同合作完成20ng超低起始量麦蛾茧峰基因组组装,这是首次使用低于100 ng的DNA完成全基因组组装。解决了个体小、样品稀有、只能获取少量DNA的物种的基因组组装的难题。贝纳基因开发的全基因组复制后基因组组装的流程,可以对ng级DNA的个体进行基因组组装。研究成果发表在预印

2020-11-19