首页 » 标签 :“基因”(共找到约500条相关新闻)
  • Devel Cell:男性不育研究重大突破!精子缺陷的表观基因组或是关键原因

    2020年1月15日 讯 /生物谷BIOON/ --每8对夫妇中就有1对存在生育困难的问题,其中近四分之一的原因都是由不明原因的男性不育所引起的,在过去10年里,研究人员发现,男性不育与缺陷的精子在发育过程中无法从DNA中“驱逐”组蛋白有关,而其背后的机制以及在精子DNA中所发生的未知,目前研究人员并不清楚。图片来源:Bobjgalindo/Wikipedi

  • 武汉肺炎病毒基因谱公开,近80%似SARS,泰国现首例

    自去年12月底武汉地区暴发的“不明肺炎”中国疾控联合专家组上周宣布初步判定是由新型冠状病毒引起。

  • 1210万元,全球首个β地中海贫血基因疗法上市!蓝鸟生物在德国推出Zynteglo,按效果分5期付款!

    2020年01月14日讯 /生物谷BIOON/ --蓝鸟生物(bluebird)是一家行业领先的基因治疗公司。近日,该公司宣布,在德国推出Zynteglo(LentiGlobin,含βA-T87Q珠蛋白编码基因的自体CD34+细胞),这是一种一次性的基因疗法,用于适合造血干细胞(HSC)移植但没有人类白细胞抗原(HLA)匹配的HSC供体、年龄在12岁以上、非

  • 世卫组织:中国已分享新型冠状病毒基因序列信息

     世界卫生组织12日宣布,已收到中国分享的从武汉不明原因病毒性肺炎病例中检测到的新型冠状病毒基因序列信息。世卫组织还表示,不建议对中国实施任何旅行或贸易限制。世卫组织在一份声明中说,12日已从中国国家卫生健康委员会获得更多有关武汉不明原因病毒性肺炎的详细信息,包括从病例中检测到的新型冠状病毒基因序列信息,这对其他国家开发特定诊断工具有重要意义。世卫

  • Nature Genetics: 染色体外环状DNA驱动神经母细胞瘤癌基因重构

      近日,纪念斯隆凯特林癌症中心等科研机构的研究人员在Nature Genetics上发表了题为“Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma”的文章,发现染色体外环状DNA驱动神经母细胞瘤癌基因重构。染色体外环状DNA(

  • 中国科学家公布斑马鱼1号染色体全基因敲除研究成果

    斑马鱼是一种小型热带淡水鱼。自上世纪70年代美国俄勒冈大学的George Streisinger教授将斑马鱼首次引入实验室以来,斑马鱼逐渐成为与小鼠、果蝇、线虫并列的四大模式动物之一。在40多年的斑马鱼研究发展历史中,欧美斑马鱼学者发起了几次大规模的斑马鱼随机诱变突变体库(Mullins et al. 1994; Solnica-Krezel et al.

  • 大豆中发现的菌根定殖基因

     伊利诺伊州乌尔巴纳-与大多数植物一样,大豆与土壤真菌以共生菌根关系配对。这种真菌可以交换一些糖,而它是根系的延伸,可以吸收比植物本身更多的磷,氮,微量营养素和水。菌根真菌在土壤中自然存在,且市售的土壤接种剂,但是从伊利诺伊大学的新研究表明,并非所有的大豆基因型同一种方式响应其菌根关系。“在我们的研究中,通过一个菌根物种定殖基因型间显着差异和11?

  • 自体干细胞基因疗法!Aruvant胎儿血红蛋白基因疗法ARU-1801获美国FDA罕见儿科疾病资格!

    2020年01月09日讯 /生物谷BIOON/ --Roivant Sciences旗下公司Aruvant Sciences是一家临床阶段的生物制药公司,专注于开发和商业化变革性疗法,用于严重血液疾病的治疗。近日,该公司宣布,美国食品和药物管理局(FDA)已授予ARU-1801治疗镰状细胞病(SCD)的罕见儿科疾病资格认定(RPD)。ARU-1801是一种改

  • PNAS:揭示跳跃基因在压力发生时的关键角色 或有望帮助机体应对癌症等多种疾病

    2020年1月6日 讯 /生物谷BIOON/ --仅有大约1%的人类DNA能够编码产生蛋白质,剩下的基因组中大约有一半是由所谓的垃圾序列所组成,这些序列能将自身复制成为RNA或DNA,随后从一个位置跳动到另一个位置;此前研究中,研究人员揭示了其中一种跳跃基因在压力发生期间所扮演的关键角色;近日,一项刊登在国际杂志PNAS上的研究报告中,来自麻省总医院的研究人

  • 研究揭示基因表达调控核心复合物LDB1/SSBP2的分子机制

     近期,《美国国家科学院院刊》(PNAS)在线发表了题为Crystal structure of human LDB1 in complex with SSBP2 的论文,该项工作由中国科学院生物物理研究所许文青/梁栋材课题组和美国国立卫生研究院Ann Dean课题组合作完成。增强子是一种控制基因表达与否的开关,它们往往远离其控制的基因,坐落于编码