打开APP

如何利用细胞重编程技术来改善人类健康?

  1. 干细胞
  2. 损伤
  3. 检测
  4. 疗法
  5. 细胞重编程
  6. 肺结核

来源:本站原创 2019-06-29 09:57

本文中,小编整理了近期多篇研究报告,共同解读科学家们如何利用细胞重编程技术来改善人类健康?与大家一起学习!【1】Cell Stem Cell:构建单细胞图谱,将心脏瘢痕组织细胞重编程为健康的心肌细胞doi:10.1016/j.stem.2019.05.020近日,在一项新的研究中,来自美国北卡罗来纳大学教堂山分校等机构的研究人员首次开发出一种稳定的可重复使用的将人成纤维细胞重编程为心肌细胞的简约平

本文中,小编整理了近期多篇研究报告,共同解读科学家们如何利用细胞重编程技术来改善人类健康?与大家一起学习!

【1】Cell Stem Cell:构建单细胞图谱,将心脏瘢痕组织细胞重编程为健康的心肌细胞

doi:10.1016/j.stem.2019.05.020

近日,在一项新的研究中,来自美国北卡罗来纳大学教堂山分校等机构的研究人员首次开发出一种稳定的可重复使用的将人成纤维细胞重编程为心肌细胞的简约平台。通过利用最新的单细胞技术和数学模拟,他们绘制出高分辨率的分子路线图,以便指导精确和有效的重编程,相关研究结果发表在Cell Stem Cell期刊上。

在过去十年里,研究者Qian是心脏重编程研究的先驱。她的实验室开展的这项最新研究推动针对人类患者的心脏重新编程更接近现实,并且着眼于帮助数百万人从心脏病发作中康复过来。Qian说,“我们相信,我们将生物实验与单细胞基因组分析相结合的跨学科方法将启发未来理解人心肌细胞特性并将这些知识转化为再生疗法的关键步骤。”

【2】Nat Chem Biol:干细胞疗法有望进入新纪元!科学家开发出新型“细胞重编程”技术!

doi:10.1038/s41589-019-0264-z

近日,一篇发表在国际杂志Nature Chemical Biology上的研究报告中,来自科克大学的科学家们通过研究对诺贝尔奖获得者—山中伸弥教授开发的“细胞重编程”方法进行了改进,使得细胞能够在较短时间内以较高的成功率产生;“细胞重编程”的方法能够获得多潜能细胞,类似于我们熟知的存在于胚胎早期阶段的细胞,由于这些细胞能通过转化机体自身现有的细胞(比如皮肤细胞等)来获得,因此其被称之为诱导多能干细胞

虽然具有一定的变革性,但山中伸弥教授的重编程方法仍然需要在两个方面进行改进,首先,细胞转化需要很长时间,大约为3-4周;其次,重编程的成功率相当低,大约为十万分之一。这项研究中,研究人员通过研究成功缩短了细胞转化所需要的时间,同时也改善了细胞重编程的成功率。

【3】Nat Biotechnol:重大突破!重编程巨噬细胞作为传感器实现癌症等多种疾病的检测!

doi:10.1038/s41587-019-0064-8

内源性生物标记物仍然是许多疾病早期诊断的指标,但是许多标记物缺乏有效指导疾病控制的敏感性和特异性,这使得疾病早期诊断以及对疾病进展的监控和治疗成为了难题。为了解决这个问题,近日来自美国斯坦福大学医学院的研究人员在生物工程系、放射科、分子影像科的Sanjiv S. Gambhir教授的带领下开发了一种基于细胞的体内生物传感器,可以实现高敏感性的肿瘤早期诊断

研究人员将巨噬细胞进行了基因工程化操纵,将荧光素酶的表达和精氨酸酶-1启动子的激活结合在一起,使得这些巨噬细胞可以感知M2型肿瘤相关代谢谱产生荧光素酶。细胞构建成功之后,研究人员将这些细胞回输到结直肠癌和乳腺癌的小鼠模型中,结果发现这些巨噬细胞可以迁移到肿瘤部位,激活精氨酸酶-1的表达,这使得研究人员可以通过生物发光成像以及检测血液中的荧光素酶的含量来诊断肿瘤

【4】Mol Ther:重编程T细胞以靶向实体瘤

doi:10.1016/j.ymthe.2018.08.013

免疫检查点抑制剂和过继性细胞治疗都是具有治疗实体瘤(如HBV相关的肝细胞癌,HCC)潜力的新型免疫疗法,但是它们都有自身的缺陷。近日,来自伦敦大学学院和新加坡A*STAR的研究人员试图联合这两种方法,利用各自的优点去治疗HCC,他们通过下调病毒性肿瘤抗原特异性的T细胞的PD-1信号通路来克服T细胞耗竭的问题,相关研究成果发表在Molecular Recalibration of PD-1+ Antigen-Specific T Cells from Blood and Liver杂志上。

研究人员开发了一种新的慢病毒转染方法,可以优先靶向内源性或TCR重排的抗原特异性CD8 T细胞,利用shRNA敲除其PD-1,随后检测了这种T细胞的抗癌效果。研究人员发现和对照组慢病毒载体相比,利用慢病毒-shPD-1进行抗原特异性的肝内CD8 T细胞转染可以显著降低其PD-1的表达。

【5】Nat Commun:科学家成功将皮肤细胞重编程为多潜能干细胞

doi:10.1038/s41467-018-05067-x

我们的体内含有多种类型的细胞,每一种细胞都扮演着不同的类型的角色,2012年诺贝尔获奖者—日本科学家山中伸弥通过研究将成体皮肤细胞成功转化成了诱导多能干细胞ipsC),这一过程称之为重编程作用。截止到目前为止,重编程过程仅可能引入关键的基因促进细胞类型的转化,这种基因称之为“山中因子”(Yamanaka factors),其能被被人工转入到正常情况下并不具有活性的皮肤细胞中;近日,来自芬兰赫尔辛基大学等机构的科学家们通过激活细胞自身的基因,成功将皮肤细胞转化成了多能干细胞,相关研究刊登于国际杂志Nature Communications上,文章中,研究人员利用基因编辑工具CRISPRa直接对细胞中相关的基因进行了激活,他们利用了一种“钝化”版本的Cas9剪刀,其并不会对DNA进行切割,而是能在不对基因组进行突变的基础上来激活基因的表达。

研究者Otonkoski教授表示,CRISPR/Cas9基因编辑系统能用来激活基因的表达,其在细胞重编程上能表现出巨大的潜力,因为其在同一时间里能对多个基因进行靶向作用,相比对转基因进行过表达作用,基于激活内源性基因的重编程过程从理论上来讲能够以一种生理学的方式来控制细胞的命运,同时还能产生较多正常的细胞;文章中,研究人员对CRISPR激活系统进行了工程化修饰,使其能够对细胞进行强大的重编程作用以产生诱导多能干细胞

【6】Nat Commun:抗炎药物双氯芬酸或有望增强心肌细胞的重编程 修复损伤心脏的功能

doi:10.1038/s41467-019-08626-y

近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自筑波大学的科学家们通过研究利用一种高通量的筛选方法发现,一种用来治疗炎症和风湿性疾病的药物—双氯芬酸或许能对出生后和成体成纤维细胞进行心脏重编程(并非胚胎细胞),相关研究有望帮助重新定义机体细胞衰老的独特障碍。

此前研究人员鉴别出的心脏重编程因子并不适合进行大规模筛选,研究者Taketaro Sadahiro说道,作为一种替代方法,我们开发出了一种先进的技术来对含有8400种化合物的化学文库进行筛选,第一轮筛选中研究者就鉴别出了37种潜在的化合物,第二轮筛选后研究者确定了4种化合物,其中最具潜力的化合物就是双氯芬酸,此前研究人员发现,双氯芬酸能通过抑制COX-2酶以剂量依赖性的方式来改善心脏的重编程,COX-2在出生后和成体的成纤维细胞中会高度表达,同时双氯芬酸还能抑制宿主一系列信号分子,包括多种炎性介导子。

【7】Cell Stem Cell:重大进展!将人成熟的血细胞直接重编程为一类新的神经干细胞

doi:10.1016/j.stem.2018.11.015

在一项新的研究中,来自德国癌症研究中心(DKFZ)和海德堡干细胞技术与实验医学研究所(HI-STEM)的研究人员首次成功地将人血细胞直接重新编程为一种以前未知的神经干细胞。这些诱导性干细胞类似于在中枢神经系统的早期胚胎发育期间形成的干细胞。它们能够在实验室中进行修饰和无限期地增殖,并且代表着一种用于再生疗法开发的候选对象,相关研究结果发表在Cell Stem Cell期刊上。

多能性的胚胎干细胞能够无限制地增殖并产生所有可能的细胞类型。2006年,日本科学家Shinya Yamanaka认识到,这样的多能性干细胞也能够在实验室中由成熟的体细胞经重编程后产生。四种遗传因子足以让成熟的体细胞逆转正常的发育过程并产生所谓的与胚胎干细胞具有相同性质的诱导性多能干细胞ips细胞)。Yamanaka因这一发现于2012年获得诺贝尔医学奖。

【8】Nature:重大突破!重编程机体的能量途径来促进肾脏损伤的自我修复!

doi:10.1038/s41586-018-0749-z

近日,一项刊登在国际杂志Nature上的研究报告中,来自凯斯西储大学医学院等机构的科学家们通过研究发现了一种新型通路或能增强损伤肾脏的修复功能;相关研究结果或能帮助研究人员开发新型药物来阻断或逆转人类严重肾脏疾病的进展,同时也有望应用于开发治疗诸如心脏、肝脏等器官的病变。

肾脏能够过滤机体血液中的废弃物和多余的液体,并且通过尿液排出不安全的分子,当肾脏发生损伤或失去功能时,废弃物就会堆积并潜在诱发患者出现多种疾病症状。研究人员所发现的新型通路包括重编程机体自身的代谢路径来恢复损伤肾脏的功能,正常情况下,一种名为糖酵解的过程能将食物中的葡萄糖转化称为能量,从而维持机体正常工作,但本文研究中研究者发现,当组织受损后,机体就会将这一过程转变成为修复损伤细胞的过程。

【9】Nat Neurosci:只需加入两种转录因子 科学家就能将非神经元细胞成功重编程为神经元细胞

doi:10.1038/s41593-018-0168-3

2012年,来自美茵茨大学的研究者Benedikt Berninger首次将大脑中的结缔组织细胞成功重编程为神经元细胞,然而截止到目前,研究人员并不清楚细胞重编程过程中的细节信息,以及相关的状态对于细胞重编程的成功性到底影响有多大?如今,一项刊登在国际杂志Nature Neuroscience上的研究报告中,研究者Berninger带领的研究团队通过研究发现,周细胞(pericytes)需要经过神经干细胞样的状态才能够转化成为神经元细胞,研究人员能对中间状态的信号通路进行操控,从而就能够激活或抑制神经元的重编程过程,相关研究结果或能帮助研究人员直接将非神经细胞重编程为神经元细胞,从而对疾病大脑组织进行再生。

周细胞能够调节大脑中小血管的直径,其主要能够参与维持血脑屏障及伤口愈合的过程,研究人员发现,靶向性地诱导细胞核中两种活性蛋白:Ascl1和Sox2,就能够促进周细胞开始形成神经细胞并具有其功能,这两种蛋白质就是所谓的转录因子,其能够决定特殊细胞中哪些DNA序列被开启或关闭,从而就能够决定细胞的形成和功能,当蛋白质Ascl1和Sox2被引入到周细胞中,其就会开启向神经元细胞的转变过程。

【10】Cell:结核疫苗开发新突破!重编程造血干细胞抵抗肺结核

doi:10.1016/j.cell.2017.12.031

肺结核(TB, 也译作结核病)是一种侵袭肺部的传染病,每20秒就夺去一个人的生命,在全世界每年导致150万人死亡。一个多世纪以来,科学家们仍未找到一种治愈方法,但是如今,在一项新的研究中,来自加拿大蒙特利尔大学等研究机构的研究人员可能已发现一种新的武器来对抗这个全球性的杀手。他们对免疫细胞进行重新编程或者说“训练”,让它们杀死导致肺结核的结核分支杆菌,相关研究结果发表在Cell期刊上。

研究者Divangahi表示,当前可用的卡介苗(BCG vaccine)并不有效。当前的抗生素治疗是有毒性的,并导致耐药性肺结核菌菌株产生。抗生素时代正接近尾声;如果我们不研究替代方法,那么针对这种结核菌,我们就有大麻烦了。(生物谷Bioon.com)

生物谷更多精彩盘点!敬请期待!

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->