Nature:揭示激酶Mst1和Mst2有助启动抗肿瘤免疫反应
2018年6月5日/生物谷BIOON/---在一项新的研究中,来自美国圣犹达儿童研究医院的研究人员鉴定出两种隐藏的驱动因子,它们影响抵抗癌症和感染的T细胞的产生。这两种隐藏的驱动因子是激酶Mst1和Mst2。他们证实Mst1和Mst2一起调节不同的树突细胞亚群的功能,其中树突细胞是适应性免疫系统(包括对癌症免疫治疗至关重要的T细胞)中的关键调节物。相关研究结果于2018年5月30日在线发表在Nat
遗传发育所应邀撰写植物细胞质类受体激酶综述文章
植物通过其细胞表面的受体蛋白来感知并响应各种信号分子,受体激酶(Receptor Kinase, RK)是植物细胞受体的最主要组成部分。受体激酶由负责感知信号的胞外结构域、单次跨膜结构域和胞内激酶结构域组成。植物受体激酶通过感知各种内源激素和多肽信号来协调生长发育过程,如BRI1能够识别油菜素内酯并调控生长发育。受体激酶还能够感知和响应自然环境中的各种病害入侵和非生物胁迫环
研究发现肝癌核心激酶群及相应干预策略
近年来,基于“癌基因依赖”理念对病人进行激酶抑制剂个体化靶向治疗已在以非小细胞肺癌为代表的多种肿瘤中取得巨大成功。然而,这一靶向单一驱动性激酶的治疗模式在肝癌的临床实践中却遭遇了极大的挑战,其根源在于肝癌所特有的高度异质性及复杂的信号通路代偿机制。目前,尽管已有Sorafenib和Regorafenib两个激酶抑制剂用于治疗晚期肝癌患者,但临床疗效均欠佳(无明显敏感人群,仅
美国FDA授予双效激酶抑制剂duvelisib治疗3种血液恶性肿瘤的优先审查资格
2018年04月10日/生物谷BIOON/-- Verastem制药公司近日宣布,美国食品和药物管理局(FDA)已受理靶向药物duvelisib新药申请(NDA)并授予了优先审查资格。duvelisib是一种首创的、口服、磷酸肌醇3-激酶δ(PI3Kδ)和激酶γ(PI3Kγ)双效抑制剂,此次NDA,旨在寻求完全批准该药治疗复发性或难治性慢性淋巴细胞白血病/小淋巴细胞淋巴瘤(CLL/SLL)以及加速
美国FDA第2次授予PI3K-δ/γ激酶双效抑制剂tenagisib孤儿药地位
2018年04月10日/生物谷BIOON/--Rhizen制药公近日宣布,美国食品和药物管理局(FDA)已经授予靶向药物tenagisib(RP6530)治疗皮肤T细胞淋巴瘤(CTCL)的孤儿药地位。之前,FDA也授予了该药治疗外周T细胞淋巴瘤(PTCL)的孤儿药地位和快速通道地位。孤儿药是指开发用于治疗罕见病的药物。在美国,罕见病是指患病人群少于20万的疾病类型。开发罕见病治疗药物的制药公司将获
治疗肺癌 AXL激酶抑制剂达临床终点
近日,位于挪威卑尔根的生物制药公司BerGenBio宣布,其评估BGB324(bemcentinib)的临床试验已经达到了第一个功效终点。Bemcentinib是种选择性AXL激酶抑制剂,该临床试验评估了bemcentinib与厄洛替尼(erlotinib)联用,治疗晚期非小细胞肺癌(NSCLC)患者的药效和安全性,这些患者已经获准使用EGFR抑制剂。肺癌是癌症致死的主要原因之一,而许多肺癌患者都
Science:揭示243种激酶抑制剂的作用靶标
2017年12月4日/生物谷BIOON/---激酶是控制许多细胞功能(包括细胞生长和自我毁灭)的关键酶。人类基因组中大约有500种激酶。在癌细胞中,这些激酶经常过度活跃,因而正常的调节机制不再发挥作用。异常的细胞能够不受控制地增殖,而且生长中的肿瘤启动血管的形成以维持自身的生存。激酶抑制剂的使用能够成功地延缓某些癌症中的肿瘤生长。当前有超过350种激酶抑制剂正用于临床试验中,它们中的37种已被批准
Plant Physiology:受体类激酶介导植物先天免疫研究获系列进展
植物对病菌的识别主要存在于两个层面,对病菌表面保守的分子特征物质(PAMP)的识别(PTI,PAMPs triggered immunity)和对致病因子(effector)的识别(ETI,Effector triggered immunity)。这两个层面上的识别都可以激活下游的抗病基因,而这些基因的激活很多是通过蛋白磷酸化修饰实现的。中国科学院微生物研究所刘俊课题组一直
PNAS Plus:揭示静电作用介导Src家族激酶底物选择性的分子机制
6月28日,国际学术期刊PNAS Plus 在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所许琛琦研究组的最新研究成果Ionic CD3-Lck interaction regulates the initiation of T-cell receptor signaling。该研究揭示了Src家族酪氨酸激酶Lck识别不同底物的新型分子机制,及其对T细胞信号
局部的蛋白激酶A在激活期间仍然保持完整
2017年6月25日/生物谷BIOON/---在一项新的研究中,美国华盛顿大学医学院药物学系主任John D. Scott博士、华盛顿大学医学院药物学系研究员F. Donelson Smith博士及其同事们发现一种关键的细胞信号转导通路要比之前所认为的那样更多地限制在细胞的局部。通过这个至关重要的信号转导通路进行通信就好比是利用你的Snapchat账户进行社交网络通信。这就推翻了关于活细胞内的这种