纳米技术如何变革心血管疾病治疗?
2020年3月15日讯 /生物谷BIOON /——心血管疾病(CVDs)是全球第一大死亡原因。根据世界卫生组织(WHO)的数据,每年死于心血管病的人比死于其他原因的人要多--2016年估计有1790万人死于心血管病,占全球死亡人数的31%。在这些死亡中,85%是由于心脏病发作和中风。密歇根州立大学精准健康项目助理教授Morteza Mahmoudi表示:"在
单链DNA编码“纳米”分子反应研究取得进展
近日,中国科学院上海高等研究院光源科学中心物理生物学研究室、中国科学院上海应用物理研究所和上海交通大学合作发展了一种用单链DNA编码金纳米粒子的方法,并实现了动态“纳米”分子反应。该方法通过设计一条多嵌段的单链DNA序列,可以赋予金纳米粒子类似原子的离散价态和正交价键。这些“纳米”原子则可通过DNA分子反应组装成各向异性的“纳米”分子,并进而产生“纳米”分子
JCI:新型DNA技术用于靶向输送抗HIV药物
2019年11月11日 讯 /生物谷BIOON/ --近日,Wistar研究所的科学家利用基于合成DNA的技术来促进小动物和大动物模型中产生HIV广谱性中和抗体,为简单有效的下一代HIV预防和治疗方法提供了概念验证。这些结果在线发表在《Journal of Clinical Investigation》杂志上。 尽管抗逆转录病毒疗法在治疗HIV感染方面取得了非凡的进步,但仍需要新的预防和
Nano Letter:纳米技术改善化疗传递,增强抗癌疗效
2019年10月23日讯 /生物谷BIOON /--密歇根州立大学(Michigan State University)的科学家发明了一种监测化疗药物浓度的新方法,这种方法能更有效地将患者的治疗控制在关键的治疗窗口之内。随着医学研究日益进展,对癌症患者进行化疗仍有很多问题。过高的剂量会导致健康组织和细胞死亡,引发更多副作用甚至死亡;过低的剂量可能会使癌细胞昏迷,而不是杀死它们,使它们在许多情况下变
太阳制药Cequa(环孢素0.09%)在美国上市,首个采用纳米胶束技术的环孢素药物!
2019年10月17日/生物谷BIOON/--印度药企太阳制药(Sun Pharma)近日宣布,在美国推出眼科新药Cequa(环孢素眼用溶液,0.09%),该药于2018年8月获得美国FDA批准,用于干眼症患者的治疗。Cequa是环孢素浓度为0.09%的新型专利纳米胶束配方,是一种不含防腐剂的清透水溶液,每日2次滴于眼部可增加泪液产生。该药将以单次使用小瓶装上市销售,由太阳制药旗下太阳眼科公司负责
开发出CRISPR LiveFISH技术,成功对活细胞中的DNA和RNA进行实时成像
2019年9月30日讯/生物谷BIOON/---基因组编辑可以诱导包括易位在内的染色体重排。尽管测序方法已用于鉴定和描述与遗传疾病和基因编辑有关的染色体异常,但是染色体重排的时间动态变化鲜为人知。之前的研究依赖于使用基因组整合的LacO/TetO阵列,这既枯燥又有挑战性。与荧光蛋白融合在一起的没有核酸酶活性的dCas9,或者招募单向导RNA(sgRNA)的与荧光蛋白融合在一起的RNA结合蛋白能够对
ACS Nano:新型纳米技术平台有望加速干细胞移植领域研究
2019年9月2日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志ACS Nano上的研究报告中,来自罗格斯大学的科学家们通过研究开发了一种新型纳米技术,其或能增强对干细胞移植的研究,有望帮助改善多种疾病人群的治疗,包括阿尔兹海默病、帕金森疾病、其它神经变性疾病和中枢神经型损伤等。图片来源: Jin-Ho Lee/Rutgers University-New Brunswick研
第八届中国国际纳米科学技术会议在京举行
2019年8月17日,由国家纳米科学技术指导协调委员会主办、国家纳米科学中心承办的第八届中国国际纳米科学技术会议(ChinaNANO 2019)在北京国际会议中心召开。中国国际纳米科学技术大会经过14年的发展,已经成为纳米科学技术领域的品牌会议,成为全球从事纳米领域的科技工作者进行学术与技术交流合作的重要平台,同时也是纳米企业放眼全球、展示竞争实力、开发新兴市场的竞合平台。本次会议将继续秉承其加强
研究开发新型抗原/佐剂共递送纳米技术
国际学术期刊Nano Letters 在线发表了中国科学院上海巴斯德研究所钱志康课题组的最新研究论文“Versatile Functionalization of Ferritin Nanoparticles by Intein-Mediated Trans-Splicing for Antigen/Adjuvant Co-delivery”。蛋白质自装配纳米颗粒拥有结构均一度高、生物
美国科学院院士庄小威团队开拓测量DNA与蛋白质相互作用新技术
许多基因组处理反应,包括转录、复制和修复,都会产生DNA旋转。直接测量DNA旋转的方法,如转子珠跟踪、角度光学捕获和磁性镊子,有助于揭示一系列基因组加工酶的作用机制,包括RNA聚合酶(RNAP),gyrase,病毒DNA包装机器和DNA重组酶。尽管旋转测量有可能改变我们对基因组处理反应的理解,但测量DNA旋转仍然是一项艰巨的任务。现有方法的时间分辨率不足以跟踪在生理条件下由