赛诺菲庞贝病二代酶替代疗法avalglucosidase alfa头对头III期临床获得成功!
在晚发型庞贝病(LOPD)患者中,avalglucosidase alfa显著改善疾病关键表现(呼吸障碍和活动能力下降)。
维昇药业TransCon甲状旁腺素全球II期临床研究核心结果公布,可使82%的受试者替代常规治疗
2020年4月26日,维昇药业(VISEN Pharma),一家致力于内分泌相关治疗领域,将全球领先的治疗方法及药品引入中国的合资公司,负责 Ascendis Pharma旗下的内分泌治疗方案在大中华区的开发和推广。Ascendis Pharma于2020年4月19日公布了一项旨在评估TransCon甲状旁腺素在甲状旁腺功能减退症(HP)
长效替代疗法TransCon PTH展现强劲疗效,治疗4周摆脱标准护理(钙+维D)!
2020年04月20日讯 /生物谷BIOON/ --丹麦生物制药公司Ascendis Pharma近日公布了甲状旁腺激素(PTH)长效前体药物TransCon PTH全球性II期临床试验PaTH Forward四周固定剂量双盲部分的阳性顶线结果。该试验正在评估TransCon PTH治疗甲状旁腺功能减退症(hypoparathyroidism,HP)成人患者
Science子刊:胰腺炎竟是一种应激激素FGF21缺乏症,有望通过替代疗法加以治疗
2020年1月20日讯/生物谷BIOON/---在一项可能具有临床意义的新研究中,来自美国德克萨斯大学西南医学中心和中国上海交通大学等研究机构的研究人员发现患有胰腺炎的人类和小鼠都缺乏一种称为成纤维细胞生长因子21(FGF21)的应激激素。在正常情形下,胰腺中的FGF21比体内任何其他器官中的丰富。他们还表明,替代疗法可在大约24小时内逆转小鼠模型中的这种疾
首次揭示端粒t环保护染色体机制
2019年11月19日讯/生物谷BIOON/---在一项新的研究中,来自英国弗朗西斯克里克研究所等研究机构的研究人员发现位于端粒末端的环状结构(loop)起着至关重要的保护作用,可阻止染色体发生不可挽回的损伤。他们揭示了这种称为t环(t-loop)的环状结构的缠绕和解开如何阻止染色体的末端被识别为存在DNA损伤,而且还揭示了这一过程是如何受到调控的。相关研究结果于2019年11月13日在线发表在N
Nature Nanotechnology: 纳米颗粒药物递送可缓解疼痛并提供更有效的阿片类药物替代品
近日,美国纽约大学和澳大利亚莫纳什大学等科研机构的科研人员在Nature Nanotechnology上发表了题为“A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain”的文章,开发出一种药物递送纳米粒子,能够把药物送入神经细胞的特定部位,极
Nat Commun:无需基因改造,延长端粒就可显著延长寿命,抗击衰老
2019年11月5日讯/生物谷BIOON/---端粒是位于真核生物染色体末端的核蛋白结构。它们由串联重复的TTAGGG DNA序列组成,这种序列被称为shelterin的六蛋白复合物所结合。端粒对于DNA修复活性和保护染色体末端免受DNA降解至关重要,它们在染色体稳定性中起着重要作用。由于所谓的“末端复制问题(end replication problem)”,端粒随着细胞的每一次分裂而缩短。人类
我国医用高值耗材行业整合加速 进口替代势在必行
医用高值耗材主要是相对低值耗材而言的,主要由骨科、心血管等各科所需的介入器材、植入器材和人工器官等高附加值的消耗材料组成。现阶段,我国企业除了超声聚焦等少数技术处于国际领先水平外,在高科技产品方面,总体水平与国外先进水平的差距比较大。总体而言,我国高值医疗器械行业仍然处于吸收发达国家技术优势、转化创新的阶段。一、高值耗材行业门槛和特点(一) 行业门槛1. 准入门槛由于医用高值耗材主要以
端粒酶研究领域的重要成果!
本文中,小编整理了多篇研究报告,共同聚焦科学家们在端粒酶研究领域取得的重要成果,分享给大家!图片来源:Vimeo【1】PNAS:促进癌症的端粒酶也能保护健康细胞doi:10.1073/pnas.1907199116马里兰大学和美国国立卫生研究院的新研究揭示了端粒酶的新作用。端粒酶在正常组织中唯一已知的作用是保护某些定期分裂的细胞,如胚胎细胞、精子细胞、成体干细胞和免疫细胞。科学家们认为,端粒酶在所
PNAS:失控的线粒体会引起细胞端粒损伤
2019年9月28日讯 /生物谷BIOON /——匹兹堡大学希尔曼癌症中心的研究人员为长期以来的观点提供了第一个具体证据,即患病的线粒体污染了它们本应提供能量的细胞。这篇近日发表在《PNAS》上的论文涉及一项因果实验,目的是启动线粒体连锁反应,这种反应会对细胞造成破坏,一直到遗传水平。图片来源:Qian et al. (2019), PNAS匹兹堡大学医学院和希尔曼癌症中心的药理学和化学生物学教授