麻省理工学院“类脑芯片”最新突破:人造突触问世,可将人脑能力“复制”到芯片 ,终端 AI 威力或不再受限
"-->人脑最不可取代的便是其综合处理的能力。人脑被柔软的球状器官所包围,这个器官大约含有一千亿个神经元。在任何特定的时刻,单个神经元可以通过突触(即神经元之间的空间,突触中可交换神经递质)传递指令给数以千计的其它神经元。人脑中有总计超过 100 万亿的突触介导大脑中的神经元信号,在加强一些信号的同时也削弱一些其它信号,使大脑能够以闪电般的速度识别模式(pattern),记住事实并执行其它学习任务
氧化石墨烯基磁共振纳米诊疗剂研究取得进展
在磁场的作用下,一些具有磁性的原子能够产生不同的能级,如果外加一个能量(即射频磁场),且这个能量恰能等于相邻2个能级能量差,则原子吸收能量产生跃迁(即产生共振),从低能级跃迁到高能级,能级跃迁能量的数量级为射频磁场的范围。核磁共振可以简单的说为研究物质对射频磁场能量的吸收情况。将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共
科学家开发出模拟心脏病的器官芯片
当研究疾病或者测试潜在的药物疗法时,研究人员通常借助于培养皿中的细胞或者利用实验室动物开展的试验。但最近,科学家开发出一种不同的方法:能模拟人类器官功能并且可充当更廉价和更高效工具的器官芯片小型设备。现在,研究人员创建了一种尤其适合建立动脉粥样硬化模型的新设备。动脉粥样硬化是导致心脏病和中风的首要原因。在一篇1月2日发表于美国物理联合会出版集团所属《应用物理快报—生物工程》杂志的论文中
条码化纸基芯片大规模制造及在即时检验中的应用研究获进展
近日,中国科学院国家纳米科学中心研究员蒋兴宇、研究员张伟和博士杨明珠,通过纸的堆叠和切削加工技术,开发了一种条码化纸基芯片的大规模制造方法和一种可用条码读取器进行结果读出的多重检测方法,为传统材料(纸)的新功能和新应用开发提供了思路。相关研究成果以Skiving stacked sheets of paper into test paper for rapid and multiplexed as
柠檬烯环氧水解酶立体选择性催化机制研究获进展
环氧水解酶广泛分布于微生物和植物中,其生物学功能主要包括天然产物合成、有毒环氧化合物的降解以及参与信号转导等。目前主要用于有机化学和生物催化中不对称合成相应的高值手性二醇化合物。中国科学院天津工业生物技术研究所研究员孙周通前期采用柠檬烯环氧水解酶(LEH)为模式酶,以不对称催化1,2-环氧己烷合成手性1,2-环己二醇为模式反应进行定向进化方法学研究,分别通过单密码子饱和突变和三密码子饱
卫计委重磅发布《个体化医学检测微阵列基因芯片技术规范》!
为进一步提高感染性疾病相关个体化医学检测,以及微阵列基因芯片技术的规范化水平,卫计委组织专家制定了《感染性疾病相关个体化医学分子检测技术指南》和《个体化医学检测微阵列基因芯片技术规范》。备注:因《感染性疾病相关个体化医学分子检测技术指南》篇幅较长,请点击卫计委官网地址查看【http://www.nhfpc.gov.cn/ewebeditor/uploadfile/2017/12/201712051
小海龟新一代芯片数字PCR BioDigital·華 产品预订
求于致精,臻于至善, 由上海小海龟科技有限公司研发的新一代芯片式数字PCR – BioDigital•華即将正式登场, 这是一款最新前沿且具有革命性的高端医疗产品, 颠覆以往的传统模式, 实现更精准的基因检测。小海龟科技的首款芯片式数字PCR - BioDigital•華是国人首款全自主研发并拥有完全自主知识产权的数字PCR, 这是属于中国人的数字PCR, 属于中国人的骄傲
第一届太湖·生物芯概念计算研讨会——以芯片技术推动数字化生物科技变革
由军事科学院辐射医学研究所伯晓晨研究员、数学工程与先进计算国家重点实验室副主任韩文报教授、中国科学院武汉病毒研究所刘翟研究员、数学工程与先进计算国家重点实验室权建校副研究员共同召集的第一届太湖·生物芯概念计算研讨会于2017年12月5日在无锡召开。 本次会议由国防创新特区生物交叉领域专家组发起,数学工程与先进计算国家重点实验室、国家超级计算无锡中心、江苏微锐超算科技有限公司联合承办。来自
2017微流控芯片前沿研讨会在沪隆重召开
2017年11月17日 讯 /生物谷BIOON/--2017年11月17日,由生物谷组办,中国科学院大连化学物理研究所支持的“2017微流控芯片前沿研讨会”在上海远洋宾馆隆重开幕,现场座无虚席。来自科研及医疗领域的科学家及医生学者们共聚一堂,探讨微流控芯片相关事宜。本次会议为期两天,今天出席演讲的嘉宾有来自中科院大连化物所的林炳承教授、哈尔滨工业大学朱永刚教授、清华大学林金明教授、浙江大学牟颖教授
Science子刊:利用石墨烯传感器高灵敏度地检测HIV
图片来自Leiden University。2017年11月4日/生物谷BIOON/---在一项新的研究中,来自德国于利希研究中心、荷兰莱顿大学和中国上海大学的研究人员发现了一种优雅而又简单的方法来改进石墨烯传感器的灵敏度。这些所谓的“下一代石墨烯电子生化传感器设备”因具有非常低的电子噪音而能够检测含量非常低的HIV DNA。相关研究结果发表在2017年10月25日的Science Advance