打开APP

AJHG:计算生物学所研究人员建立了研究人群基因交流历史和混合动力学机制的新方法

国际著名学术期刊《美国人类遗传学杂志》(AJHG)在线发表了上海生命科学研究院计算生物学所徐书华课题组的最新研究成果Exploring Population Admixture Dynamics via Empirical and Simulated Genome-Wide Distribution of Ancestral Chromosomal Segments。

2012-11-18

欧洲20家机构企业成立“药物发现动力学联盟”K4DD联盟

K4DD联盟研究将获得由IMI提供的资金支持 2012年12月3日电 /生物谷BIOON/ --拜耳(Bayer)与荷兰莱顿大学将负责协调一个新成立的国际联盟——K4DD(Kinetics for Drug Discovery,药物发现动力学),该联盟的启动,旨在现代药物发现中探索一种新的概念,来解决新药研发中面临的重大问题。

2012-12-04

Cell:美描述人转录因子调控网络环路及其动力学

众多序列特异的转录因子 (transcription factors ,TFs) 组合而成交叉的调控网络,这些调控网络构成细胞发挥生物学功能的基础。 9月5日,国际著名杂志Cell在线发表了美国华盛顿大学等科研人员的一篇题为Circuitry and Dynamics of Human Transcription Factor Regulatory Networks的研究论文...

2012-11-18

Cell:测定活细胞内异染色质动力学的新方法

6月14日,Cell杂志在线报道了一种新颖的体内测定染色质修饰动力学的方法。组蛋白翻译后修饰是非常重要的基因调控,但其传播的模式和对可遗传基因表达状态的贡献大小仍存在争议。为了解决这些问题,研究者开发了一种染色质体内试验(CiA)系统,采用化学诱导接近,启动和终止在活细胞中的染色质修饰。

2012-11-18

Science:p53动力学决定细胞命运

6月15日,Science杂志报道,p53蛋白对刺激反应的不同动力学可导致不同的细胞命运。细胞传递信息的分子信号通路常显示出复杂的动力学模式。肿瘤抑制因子p53的动力学行为就可随刺激的不同而变化。在面对DNA双链的断裂时,它的反应表现为一系列重复的脉冲式变化。 利用一个计算机模型,研究者确定了一套精确定时的给药方案,可以将脉冲式p53反应变为持续性p53反应。

2012-11-18

PLoS Comput Biol:新型分子动力学模型或帮助研究者解析共调节基因的功能

2013年4月1日 讯 /生物谷BIOON/ --近日,来自意大利的科学家通过研究开发出了一种新型的染色体数字模型,研究者通过对这种新型模型的深入研究将有可能为实验提供一些数据,而且可以为研究染色体DNA的功能提供帮助。相关研究成果刊登于国际杂志PLoS Computational Biology上。

2013-04-01

Structure:POT-1/TTP-1复合物调节端粒长度的结构动力学研究

2012年11月29日讯 /生物谷BIOON/ -- 对蛋白复合物调节染色体技巧的新见解有望促进抗癌药物的筛选方法。由生物工程教授Sua Myong博士率领的研究小组,在Structure期刊上发表了他们的最新研究成果。 Myong团队专注于了解能保护及调节端粒的蛋白质。端粒是染色体末端的重复DNA单元片段,能保护染色体中重要编码基因部分的损失或损伤,就像鞋带两头的小金属箍,避免末端散开或磨损。

2012-12-03

Glo Pla Cha:常宏等在干旱加剧动力学机制上获突破

近日,国际杂志Global and Planetary Change刊登了中科院地球环境研究所研究人员的最新研究成果“Magnetostratigraphic and paleoenvironmental records for a Late Cenozoic sedimentary sequence drilled from Lop

2012-11-18

Lett:数学模型阐释力学对细菌鞭毛马达影响机制

近日,北京大学生物动态光学成像中心的白凡副研究员在顶级物理期刊Physical Review Letters第108期发表了题为“Coupling between switching regulation and torque generation in bacterial flagellar motor” 的论文,用数学模型阐释了力学环境对细菌鞭毛马达反转的影响机制。

2012-11-18

PLoS ONE:癌蛋白能够短暂控制线粒体的结构、功能及动力学变化

近日,来自美国匹兹堡大学医学中心的研究人员发现,c-Myc能够短暂的控制线粒体的结构、功能及动力学变化,相关研究成果于5月21日在线发表在PLoS ONE上。 c-myc基因是myc基因家族的重要成员之一,它既是一种可易位基因,又是一种可调节基因,也是一种能够使细胞无限增殖,获得永生化功能,并促进细胞分裂的基因。

2012-11-18