研究揭示脑部疾病治疗新靶点
OHSU Vollum研究所的科学家已经发现了一种在神经系统内传递信号的神经细胞线状部分的轴突变性中发挥关键作用的酶。所有神经退行性疾病都发生轴突损失,因此这一发现可以为治疗或预防广泛的脑部疾病开辟新的途径。研究小组发现Axendead酶或Axed酶在促进轴突自身破坏方面发挥了新的作用。他们发现,当Axed功能被阻止时,受伤的轴突不仅保持了其完整性,而且仍然能够在大脑的复杂电路中传输信
Cell子刊:科学家成功利用在体电场刺激引导神经干细胞定向运动
7月11日,Cell旗下的《Stem Cell Reports》杂志作为推荐文章正式刊发仁济医院神经外科和美国加州大学戴维斯分校(University of California Davis)合作的一项研究成果“Electrical Guidance of Human Stem Cells in the Rat Brain”。该成果是世界上在生物体内首次成功应用电信号激活和诱导移植干细胞的定向运动
深度解读:感染性疾病如何改变全球经济、人类的文化、生活习惯以及语言?
2017年7月19日 讯 /生物谷BIOON/ --尽管致病菌小的无法用肉眼看到,但其仍然会引发严重的人类疾病,正因为如此,几个世纪以来,人类的生活方式也受到了极大的影响,很多感染性疾病都足以影响我们居住的环境和方式、我们的经济、文化和日常习惯等,而且当感染性疾病被消除后这些影响还会持续很长一段时间。感染性疾病往往会改变社区居民的结构和数量。1348年至1350年在欧洲爆发的黑色病疫情,患者表现为
Stem Cell Rep:科学家成功利用在体电场刺激引导神经干细胞定向运动
7月11日,Cell旗下的《Stem Cell Reports》杂志作为推荐文章正式刊发仁济医院神经外科和美国加州大学戴维斯分校(University of California Davis)合作的一项研究成果“Electrical Guidance of Human Stem Cells in the Rat Brain”。该成果是世界上在生物体内首次成功应用电信号激活和诱导移植干细
Cell:深度解析细菌抵御外来“入侵者”的精准防御机制
2017年7月13日 讯 /生物谷BIOON/ --通过进行一系列接近原子分辨率的快速拍照,来自康奈尔大学和哈佛医学院的科学家一步一步地观察了细菌如何有效抵御诸如噬菌体等外来入侵者的进攻,噬菌体是一种能够感染细菌的病毒。研究者所观察到的细菌抵御病毒感染的过程是一种利用CRISPR位点的机制,即细胞中的DNA能够被切割插入额外的DNA元件。图片来源:www.phys.org如今生物学家们能够利用CR
新技术使科学家对人类脑部疾病的认识更近了一步
大阪大学的研究人员开发了一种高速串行切片成像系统,可以捕获整个小鼠脑的高分辨率图像,进一步增强我们对啮齿动物和灵长类动物中脑疾病的认识。要充分了解大脑功能和功能障碍,重要的是能够使整个大脑的解剖学和活动变化可视化。可以区分各个细胞的高分辨率脑成像和获取的数据的定量比较对于显示大脑如何受到疾病的影响至关重要。然而,目前尝试以足够高的分辨率对整个鼠标进行成像,以获得详细信息需要
Nature:科学家深度解析单细胞生物学的研究进展
2017年7月10日 讯 /生物谷BIOON/ --细胞学说是生物学研究的基石,细胞学说也就是将细胞作为生命基本单位的一种概念,但尽管在生物学家的显微镜下经历了将近180年的历史,科学家们对细胞的研究仍然具有一定的神秘色彩,如今研究者们正在尽力通过对单个细胞进行研究来阐明细胞的天性,比如到底有多少不同种类的细胞存在?其能发挥怎样的角色?这些细胞又是如何随着时间延续而不断发生改变的呢?图片来源:Mo
PLoS Biol:刚出生小鼠接受麻醉刺激会影响其大脑发育
2017年7月8日 讯 /生物谷BIOON/ --美国FDA最近发布了一项安全警告,即在婴儿出生的早期接受麻醉类药物的刺激,会影响其大脑的正常发育。最近一项发表在《PLOS biology》杂志上的,由Eunchai Kang等人做出的研究发现,出生早期的小鼠在暴露于异氟烷的环境中会引起mTOR信号激活发生异常,而这一信号对于大脑的发育十分关键。来自约翰霍普斯大学的研究者们对小鼠的海马体,即负责学
科学家深度揭示高脂肪饮食对结直肠癌发病的影响
2017年7月9日 讯 /生物谷BIOON/ --饮食不良和80%的结直肠癌患者发病直接相关,但饮食不良如何诱发结直肠癌背后的分子机制,研究人员目前并不清楚。日前,一项刊登在国际杂志Stem Cell Reports上的研究报告中,来自克利夫兰诊所的研究人员通过研究鉴别出了一种特殊的分子通路,其在阐明高脂肪饮食和结肠中肿瘤发展之间的关联上扮演着关键的角色。图片来源:Wikipedia/CC BY-
Cell:深度脑部刺激或无需电极
近日,美国麻省理工学院(MIT)研究人员开发出一种深度激发大脑内部神经元的方法,无需使用当前深度脑部刺激所需的植入装置。在发表于《细胞》杂志的论文中,研究人员通过操控小鼠头部的电极,让它的耳朵、爪子和胡须摇动。这种被称为时间干涉(TI)刺激的新技术为大脑研究打开了另一扇门。目前的深度脑部刺激法都需要将电极植入大脑。医生通常会谨慎使用该手段,仅限于对帕金森等严重疾病进行该侵入性治疗。而经颅磁刺激和其