打开APP

Front Microbio:饮水中或存在大量多重耐药细菌的耐药基因

大量的细菌会通过市政设施进入环境中,尤其是医院的废水。尽管废水处理厂的处理减少了总的细菌数量,但是对于多重耐药细菌并不能杀灭,近日,研究者Eawag在洛桑日内瓦湖城开展的一项研究揭示了多重耐药细菌的存在。洛桑市大约每天处理90000立方米的污水,全部排放到日内瓦湖的海湾处,排放点长700米,深30米。洛桑市所处理的废水不仅仅是来自居民的,而且来自沃州大学医院(CHUV)。

2012-11-18

PLoS One:揭示抗生素耐药细菌及耐药基因在食物链中的分布模式

2012年12月2日 讯 /生物谷BIOON/ --近日,刊登在国际杂志PLoS One上的一篇研究报告“Distribution and Quantification of Antibiotic Resistant Genes and Bacteria across Agricultural and Non-Agricultural Metagenomes.”中...

2012-12-03

美开发转基因细菌 可将常见野草转化为生物燃料

据美国物理学家组织网11月29日报道,最近,美国能源部联合生物能源研究所研究人员通过转基因工程,首次制造出了能消化柳枝稷生物质的埃希氏菌(Escherichia coli bacteria),将其中的糖转化为可代替汽油、柴油和航空燃料3种运输燃料的先进生物能源,而且无需添加任何酶。相关论文发表在《美国国家科学院院刊》上。

2011-12-02

Plos One:新方法解析细菌基因组调节子网络排布的特点

1月3日,国际著名杂志Plos One在线刊登了一篇文章“细菌基因组调节子的染色体排布”( Genomic Arrangement of Regulons in Bacterial Genomes),文章的通讯作者是来自吉林大学计算机学院的客座教授徐鹰,在文章中,作者用计算机技术来阐述了细菌调节子的排布规则。

2012-11-18

海洋生物基因工程的难点与前景

从20世纪80年代开始,随着基因工程的逐步成熟,这项技术也开始被应用到海洋生物的研究与开发中。 海洋生物基因工程应用的思路很清楚,就是要利用特殊的海洋微生物(或植物)来生产具有特殊功能的生物医药、生物材料等,还可以应用在酶工程中,从海洋微生物(比如嗜盐微生物,海底的嗜压微生物)中筛选特种酶,由于它们能够在特殊的环境下稳定生存并具有独特的新陈代谢途径,因而可能具有独特活性和重要的应用价值。

2011-10-08

PNAS:邱志刚等发现纳米材料可促进耐药基因细菌之间转移

中国科技网讯 记者今天从军事医学科学院获悉,一种名叫氧化铝的纳米材料因能吸附水中的有机物、重金属等有害物质,而被不断应用于水源的净化处理。这种纳米材料可显著促进耐药基因在细菌之间的转移。国际著名学术刊物《美国科学院院报》(PNAS)以《纳米氧化铝促进质粒介导的多重耐药基因跨种属水平转移》为题刊发了他们的科学论文,并重点介绍了这项科学研究,这项科学发现在国际上尚属首次。

2012-11-19

PNAS:血液中的基因表达可区别病毒和细菌导致的发热

一项研究报告说,血液中的基因表达特征可以帮助区别幼儿的发热是由病毒还是由细菌造成的。发热是病毒和细菌感染的一个常见症状,但是发热源常常在临床检查中不那么显而易见。Gregory Storch及其同事研究了发热儿童的血液是否表现出了病毒和细菌的特定基因表达特征,这些特征可能在区别这两种发热源方面有用。

2013-07-16

PLoS Pathogens:结核杆菌基因组信息解开该细菌广泛致病之谜

2013年8月25日讯 /生物谷BIOON/--结核杆菌无疑是最成功的病原体。该细菌让全世界的20亿人感染上了肺结核,平均每一秒钟就会有一个人受感染。 威斯康星大学的科学家收集了全世界的多种结核杆菌并分别对其进行了基因组分析,终于开始揭开该病原体如此猖獗的秘密。相关报道发表在八月二十一日出版的PLoS Pathogens杂志上。

2013-08-24

海洋生物基因工程的难点与前景

从20世纪80年代开始,随着基因工程的逐步成熟,这项技术也开始被应用到海洋生物的研究与开发中。 海洋生物基因工程应用的思路很清楚,就是要利用特殊的海洋微生物(或植物)来生产具有特殊功能的生物医药、生物材料等,还可以应用在酶工程中,从海洋微生物(比如嗜盐微生物,海底的嗜压微生物)中筛选特种酶,由于它们能够在特殊的环境下稳定生存并具有独特的新陈代谢途径,因而可能具有独特活性和重要的应用价值。

2013-01-30

PNAS:发现基因hpnR有助于细菌在极端环境下存活

在2010年墨西哥湾深水地平线石油泄漏之后,嗜甲烷菌(methane-eating bacteria)在墨西哥湾大量生长。这些微生物的突然增加让人充满好奇:在这次石油泄漏之前,科学家们在这一区域很少观察到嗜甲烷菌存在的迹象。 如今,来自美国麻省理工学院的研究人员发现一种细菌基因,它可能能够解释嗜甲烷菌的这种突然增加。

2012-11-18