Pharmaxis治疗囊胞性纤维症新药Bronchitol未能通过FDA审核
2013年2月2日讯 /生物谷BIOON/ --Pharmaxis公司治疗囊胞性纤维症新药Bronchitol因未能充分提供其安全性和有效性数据而未获FDA审核通过。这一消息也使得公司的股价大幅缩水。Bronchitol能够清楚囊胞性纤维症患者肺部的粘液,已经在澳大利亚和欧盟批准上市。FDA拒绝批准该药物的原因在于Pharmaxis公司未能解释为什么研究中很多志愿者中途退出研究项目。
Control Release:载紫杉醇的纳米脂质体-微泡复合物作为超声促发的药物载体
最新发布的2013年1月国际学术期刊《控释杂志》(Journal of Controlled Release)发表了中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学超声研究组的最新成果:载紫杉醇的纳米脂质体-微泡复合物作为超声促发的药物载体及其抗肿瘤作用的研究。
TriReme新型Glider PTCA球囊导管系列获FDA批准
-- TriReme 拓展后的新型 Glider™ PTCA 球囊导管系列获 FDA 批准 加州普莱森顿2012年7月16日电 /美通社亚洲/ -- TriReme Medical, Inc. (TMI) 今天宣布,该公司拓展后的独特 Glider™ PTCA 球囊导管系列已获得美国食品药品监督管理局 (FDA) 的批准。
Nano Nanot Biology & Med:白血病药物疗法新突破:“纳米钻石”进行药物运输克服药物耐性
新加坡国立大学等处的研究者通过将常见的白血病多种药物分子结合到“纳米钻石”上,从而增强了对白血病细胞的药物运输,而且可以使得药物停留在细胞中来抵御癌症。 (Credit: Han B. Man and Hansung Kim) 2013年9月15日 讯 /生物谷BIOON/ --近日,刊登在国际杂志Nanomedicine:Nanotechnology...
PNAS:科学家发现运输细菌毒素进入宿主细胞引发疾病的关键受体
近日,一项来自弗莱堡大学研究人员的最新研究发现了将产气荚膜梭菌毒素“偷运”进宿主细胞的受体,产气荚膜梭菌是一种引发气性坏疽和食物中毒的病原菌,TpeL毒素是其产生的一种细菌毒素,该毒素和许多梭菌属菌株产生的毒素非常相似,这种毒素可以结合到细胞表面分子上随后会慢慢进入到细胞中引发细胞死亡,相关研究成果刊登于国际杂志PNAS上。
Ang Chem:新型脂质体抗癌药物运输技术可对癌细胞实施精准地毁灭性攻击
近日,刊登在国际杂志Angewandte Chemie上的一篇研究报告中,来自北卡罗莱纳州立大学的研究人员通过研究开发出了一种新型的抗癌药物运输技术,其可以将药物在释放之前就运输到癌细胞中,相比传统的抗癌药物运输方法相比,这种新型技术可将癌症药物置于细胞中对癌细胞可彻底地摧毁杀灭。
ACS Nano:开发出可靶向杀灭癌细胞的新型纳米药物运输系统
近日,刊登在国际杂志ACS Nano上的一篇研究论文中,来自美国赖斯大学(Rice University)的科学家通过研究设计出了一种可调病毒,这种病毒可以像安全保险箱一样,其需要两把“钥匙”打开才能释放出其中的治疗性“货物”(药物)。
MBoC:中科院研究TrkB受体囊泡运输机制获进展
神经营养因子家族成员BDNF是调控高等动物中枢神经系统发育与稳态的重要信号分子,通过结合神经元细胞膜表面受体TrkB调节神经元的发育、分化、功能维持以及突触可塑性。BDNF结合诱导TrkB形成二聚体并发生自体磷酸化,其磷酸化位点将募集下游效应因子,从而激活下游信号通路。BDNF-TrkB信号复合体通过细胞内吞进入神经元细胞,继而形成运输囊泡并继续调控多条信号通路。
NCB:囊泡运输分子机制研究获重大进展
细胞生命活动依赖于胞内运输系统。细胞内的运输系统将大量需要运输的物质分拣、包装到膜状的囊泡结构中,利用动力蛋白(又称为分子马达molecular motor)水解ATP产生的能量驱动囊泡在微管或微丝细胞骨架充当的轨道上移动,高效精确地将各种货物定向运输到相应的亚细胞结构发挥生理功能。囊泡运输分为几个环节:货物识别、沿着微管轨道运输以及货物卸载。