免疫治疗代谢检查点与肿瘤微环境中免疫细胞持久性的生物能量代谢
肿瘤免疫治疗在《科学》杂志2013 年十大科学突破中位居首位,被认为是近年来癌症治疗领域最成功的方法之一。
肿瘤免疫治疗主要分为两种:细胞免疫治疗和免疫检查点抑制剂治疗。其中免疫检查点抑制剂是指免疫细胞会产生抑制自身的蛋白小分子,肿瘤细胞利用这种机制,抑制免疫细胞,从人体免疫系统中逃脱存活下来。
免疫检查点抑制剂类药物,可解除这种抑制作用,让免疫细胞重新激活工作,消灭癌细胞。目前上市的免疫检查点抑制剂主要是CTLA-4 抑制剂和PD-1 抑制剂(PD-1/PD-L1 抑制剂),其中PD-1 抑制剂(PD-1/PD-L1 抑制剂)包括PD-1抗体(PD-1 抑制剂)和PD-L1 抗体(PD-L1 抑制剂)。
代谢程序是免疫细胞结果的上游决定因素。包括激活、增殖和记忆细胞发育在内的免疫细胞过程都是由代谢重编程驱动的,代谢重编程可以被调节以增强性能和控制免疫细胞结局。近年来,细胞分析工具的进步使人们能够更深入地了解调控策略的功能结果,从而开发出安全有效的疗法。研究人员正在利用安捷伦 Seahorse XF 技术测量动态的功能性代谢,更直接地实时测量正在发生的免疫细胞过程。
当下,我们对癌症中的代谢重编程和癌症研究中免疫代谢干预的新策略有了更深入的了解, 2023 年1 月5日,生物谷携手安捷伦聚焦“免疫治疗代谢检查点与肿瘤微环境中免疫细胞持久性的生物能量代谢”召开主题空中讲坛,邀请行业资深专家一起探讨以上问题,欢迎广大同行参与,相信将给予同行启迪。
微生物组学新方法与免疫代谢疾病研究
微生物与健康的关系一直是人们关注的话题,但长期以来我们对肠道微生物与健康关系的了解却非常有限。近年来,随着高通量测序和宏基因组学等新的研究方法的不断开发和应用,肠道微生物对人类健康的影响重新引起重视,成为当前生命科学和医学的研究热点,一些国家相继实施了人体微生物组计划并取得了突破性进展。肠道微生物基因组与人体基因组一起,通过与环境因素的相互作用,通过不同方式影响我们的健康。
肠道微生物从功能上可以分为共生、益生和病原微生物三大类,其中主要是细菌,也包括真菌、病毒和噬菌体,它们在人体肠道中保持着一种动态的平衡。
如此庞大的肠道微生物群体通过与宿主的长期协同进化,已经成为一个与人体密不可分的后天获得的重要“器官”。 肠道微生物这一“器官”发挥的功能多种多样,包括物质代谢、生物屏障、免疫调控及宿主防御等,肠道微生物和人体存在着互利共生的关系,对于维持人的健康发挥着重要的作用。
基于此,生物谷携手赛默飞世尔科技联合推出“微生物组学新方法与免疫代谢疾病研究”空中讲坛,诚邀您作为报告嘉宾参加此次论坛,与相关的行业专家聚焦肠道微生物与人类健康,为大家分享最新前沿技术和研究进展。
“纳米见微,孔明知著”
Oxford Nanopore癌症研究用户分享会
测序技术在过去二十年中的快速发展为人类基因组带来了前所未有的洞见。研究人员现在可以使用高通量测序对人类基因组样本进行常规分析以发现一系列与疾病相关的致病变异。
然而癌症是一种具有挑战性的多因素疾病,并且大部分癌症无法通过使用传统短读长测序技术检测到的简单点突变来解释。 因此,现在的癌症研究越来越重视分析结构变异 (SV)、DNA 甲基化和转录本的作用--它们与多种癌症有关。 此外,要真正了解其底层生物学机制,将变异定相到父本或母本的染色体上是至关重要的。 这样的广泛的分析超出了传统测序技术的限制, 需要使用多种且通常不精确的技术。纳米孔测序的独特特性使研究人员能够在前所未有的分辨率,解锁先前隐藏的变异并加速支持人类健康的研究。
9月14日,我们邀请到Oxford Nanopore Technologies领域应用技术专家蒲子婧博士,北京大学人民医院主任医师王殊,云南省肿瘤医院主任医师周永春,哈尔滨工业大学助理教授姜涛,举办“纳米见微,孔明知著”, Oxford Nanopore癌症研究用户线上分享会,届时,大家可以通过在线问答的方式与这些嘉宾们进行互动。
荧光显微成像技术在干细胞研究中的重要应用
近年来,干细胞研究在生命科学领域飞快发展,基于干细胞的自我更新复制、具有多向分化的独特功能,其在转化医学、再生医学、精准医学的应用越来越受到重视。而对于干细胞研究来说,荧光显微成像技术是极其重要的研究工具。荧光显微成像技术具有很多传统成像技术无法实现的优势,包括更高的分辨率、高对比度,避免繁复的样品处理过程对生物标本造成损伤,穿透深度能实现较厚的样品成像,以及可以在细胞内进行特异性标记等。最重要的是,荧光显微成像技术能够支持获取生物活体样本的动态信息,使生物特定结构和功能的研究得以实现。因此,荧光显微成像技术在帮助科学家探索干细胞世界方面发挥着不可替代的作用。
为促进干细胞领域研究人员深入交流,生物谷携手全球知名企业基恩士联合推出本次空中讲坛,邀请行业内专家为大家分享干细胞研究的前沿进展以及荧光显微成像技术的发展与应用。
此外,本次讲坛也将设置在线答疑环节,邀请观众与专家深入交流,届时欢迎广大业界和学界人士相聚云端、参与互动。
肠道微生态与肝病专题论坛暨2021(第七届)肠道微生态与健康国际研讨会会前会
人体肠道内寄生着大量的微生物,并对人体的代谢、免疫、发育等多种生理过程发挥重要的调节作用。在多种慢性肝病的发展过程中都伴随着肠道菌群的改变。一方面,肝脏疾病的发生可以影响肠道菌群的组成。比如,乙肝病毒的感染可以延缓肠道菌群的定植和成熟。另一方面,肠道菌群也能反过来影响肝脏疾病的发展。比如,当肠道菌群失衡时,肠道的通透性发生改变,肠道菌群能向肝脏内移位,抑制肝脏免疫,不利于乙肝病毒的清除。此外,肠道菌群在自身免疫性肝病、代谢性肝病、酒精性肝病的发生发展过程中都发挥这重要的作用。粪菌移植可以促进慢性乙型肝炎患者HBeAg抗原的下降,还可用于治疗肝性脑病。
因此,本论坛特邀华中科技大学附属协和医院王俊忠博士,围绕”肠道微生态与肝病“的最新前沿研究进行精彩分享!
Abstract
Approximately a trillion microbial cells colonize the mammalian intestine; these are collectively termed gut microbiota. Gut microbiota play a critical role in many physiological and pathological processes, influencing host immunity and metabolism. Gut dysbiosis is related to not only intestinal but also extra-intestinal diseases, including nervous system, respiratory, cardiovascular system, and liver diseases.
The liver is the largest internal organ and gland in the human body, which receives blood both from the portal vein and hepatic artery. Therefore, the liver is exposed to gut microbes as well as their metabolites and products. Previous studies showed that live commensal bacteria can be sampled by intestinal dendritic cells (DC) and transferred to the liver through the lymphatic route or portal vein. In healthy mice, the liver can act as a second firewall in which Kupffer cells can capture and clean commensal bacteria from the systemic vasculature. The healthy liver can maintain sterility by removing not only live commensal bacteria but also microbial metabolites and products.
Gut microbiota dysbiosis is related to chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, autoimmune liver disease, chronic hepatitis B and C, liver cirrhosis, and hepatocellular carcinoma (HCC). In mice, gut microbiota depletion was found to impair the HBV-specific T cell response and prolong HBV infection. In patients with hepatitis B-related cirrhosis, the gut microbiota community and metabolism mediated by the gut microbiota was significantly changed when compared with healthy controls. Reconstitution of the gut microbiota using fecal microbiota transplantation (FMT) facilitated hepatitis B virus e-antigen (HBeAg) clearance in patients with HBeAg-positive chronic hepatitis B after long-term antiviral therapy. FMT is also a potent therapy strategy for hepatic encephalopathy.
中山大学左涛教授在线讲解“肠道病毒群与真菌群在疾病中作用”暨2021(第七届)肠道微生态与健康国际研讨会会前会
肠道微生态与人体健康密切相关,针对肠道菌群影响疾病发生发展的机制研究一直热度不减。肠道菌群作用机制的研究,被寄希望于通过直接用于治疗、配合其他药物治疗、诊断等手段最终转化成临床价值,学界医疗界及产业界积极合作展开了多种肠道微生态治疗、微生物或其代谢产物作为标志物的研究;另一方面,通过饮食干预调节肠道微环境从而达到健康管理目的也是菌群研究的一个重要方向,这其中以益生菌的开发和临床应用最具应用前景。 肠道健康产业目前处于起步阶段,不管是基于微生物的诊断治疗产品、相关技术服务、菌株开发及产业化都还有很大的发展空间,与产业休戚相关的标准建立、市场规范、菌株专利等问题也不容忽视。
聚焦微环境,助力免疫治疗
肿瘤的发生、生长及转移与肿瘤细胞所处的内外环境有着密切关系,不仅包括肿瘤所在组织的结构、功能和代谢,也与肿瘤细胞自身的(核和胞质)内在环境有关。肿瘤就像一颗“种子”,四处攻城略地,而肿瘤微环境则为肿瘤赖以生存的“土壤”,为肿瘤的发展壮大提供养料。肿瘤与其微环境,种子-土壤这种关系,既是相互依存,相互促进,又是相互拮抗,相互斗争的。
近年来,随着肿瘤免疫治疗,特别是Car-T细胞免疫治疗技术和免疫节点治疗在临床上的成功,深入研究肿瘤微环境对免疫细胞功能的调节机制具有重要的基础研究意义。
为此,生物谷举办肿瘤微环境与免疫治疗空中讲坛。邀请专家围绕肿瘤微环境与肿瘤免疫进行深入探讨,指导肿瘤临床诊断与治疗新方向。
打破理论的极限-
光学活体显微技术及其应用
1665年,随着第一台光学显微镜的问世,人类打开了微观世界的大门,从此开启了细胞,组织,器官等的研究。然而,光学显微系统的分辨率被限制,无法对更小的生物分子和结构进行观察。突破光学衍射极限,一直是科学家们梦想和追求的目标。虽然扫描电镜、扫描隧道显微镜及原子力显微镜等技术实现了纳米级的分辨率,但以上这些技术存在对样品破坏性较大,只能观测表面等缺点,并不适合生物样品,特别是活体样品的观测。近年来,光子学、生物医学和显微成像技术等领域的相互交叉和融合发展,一系列适合生物样品成像的超分辨成像技术应运而生,被广泛应用到对于生物系统新结构和新功能的探索中。作为生物学研究中不可或缺的技术,图像分析软件种类繁多,然而传统技术面临最大的障碍就是主观性和低重复性。传统图像分割流程可能会导致不达标的实验结果,并且需要大量的手动操作,会受到人为错误的影响。
基于此景,生物谷携手全球显微镜与科学仪器的知名品牌徕卡共同举办本次论坛。关注生物医学图像和信号处理最新研究进展、未来发展方向和成果转换的同时,也将聚焦徕卡最新的Aivia平台,以此推动高质量的生物图像分析技术在生物学研究领域的使用及持续发展。
主要话题:超高分辨光学活体显微技术;图像采集与处理;生物图像分析技术在生物学领域的研究应用
【另辟蹊径 探微索隐】- 新一代脂质组学创新技术研讨会
脂质组学已成为生物医学研究的热点之一,采用质谱技术进行脂质组学研究,已能解决诸如脂质的种类鉴别及脂链组成等问题。但是,脂质精细结构,如C=C及sn-位置等,对大规模组学来说仍是一个难点。近年来,区别与定量脂质C=C位置异构体已被证明对于生理过程研究、疾病标志物筛查及新药研发有着重要意义。
2021年6月29日,沃特世将联合清谱科技举行【另辟蹊径 探微索隐 - 新一代脂质组学创新技术研讨会】,发布脂质组学精细结构分析的全新解决方案。该解决方案基于Waters ACQUITY UPLC系列超高效液相色谱、Xevo G2-XS QTof高分辨质谱,以及清谱科技(PURSPEC) Ω Analyzer脂质分析系统,具备自动化的仪器控制、批量样本运行和全流程数据处理分析功能,支持包括碳碳双键(C=C)位置精准定位在内的脂质多维结构解析,为实现脂质组学的大幅跨越和发展相关生物医学研究及疾病标志物筛查提供新维度,迎来脂质组学高通量及深维度的大数据时代。诚邀您的参加,并与相关专家深入交流。
*为了及时给予您反馈并持续为您服务,您同意并授权本平台与活动发起方“沃特世”及“清谱科技”共享您提交的个人信息。 您的信息将受到隐私政策保护,授权请点击「提交」
会议日程
时间 | 报告题目 | 报告人 |
14:00-14:05 | 主持人开场 | 李晨 沃特世大中华区生命科学市场经理 |
14:05-14:35 | 脂质组精细结构分析的质谱方法 | 瑕瑜 清华大学教授 |
14:35-15:05 | 沃特世创新脂质组学方案 | 袁铭 沃特世大中华区高级应用工程师 |
15:05-15:15 | 肝癌相关脂质异构体解析及应用 | 王韫芳 清华大学附属北京清华长庚医院 研究员 |
15:15-15:25 | 乳腺癌治疗相关的脂质标志物研究 | 王佳妮 中国医学科学院肿瘤医院 博士、副主任医师 |
15:25-15:35 | 精细结构脂质组学在虫草类药材鉴定中的应用 | 姚长良 中国科学院上海药物所 博士 |
15:35-15:55 | 交流答疑 | 张文鹏 清华大学 助理教授 |
超高分辨率荧光显微技术前沿与生物学应用
超高分辨率荧光显微成像可以说是近二十年来新兴的一项革命性技术,此前光学显微镜的分辨率只能达到200纳米,被称为阿贝衍射极限,而通常病毒和亚细胞结构的尺寸只有几十到200多纳米。超高分辨显微技术的诞生突破了这个极限,使得显微成像分辨率进入振奋人心的纳米级别时代,对于精细结构的研究得到了强力的技术支持。目前商业化比较常见的超高分辨荧光显微技术主要包括受激发射耗损显微术(STED)、随机光学重构显微术(STORM)、光激活定位显微术(PALM)、结构化照明显微术(SIM)等,基于这些技术开发的显微产品在细胞生物学、神经生物学、病毒学、植物学、病理学、遗传学、医学等领域都得到了逐步应用。
生物谷联合全球显微科技与分析科学仪器领导品牌徕卡显微系统,推出超高分辨率荧光显微成像空中讲坛,关注成像领域前沿技术进展的同时,也将聚焦此技术在生物学、医学领域的具体应用及取得的研究成果,以此推动超高分辨成像技术的广泛、高效使用,以及技术的持续更新发展。