打开APP

科学把爱变成一片药丸么

催产素经常被误认为爱情激素,它的释放一般与爱的刺激有关。现在科学家正试图利用药物的力量,制造一粒爱的药丸,给那些需要关爱的人。

2015-11-30 课时:6分钟

我们用细菌发电么

有生物学家预言,21世纪将是细菌发电造福人类的时代,科学家们也已经发现细菌可以产生电子,这是否意味着细菌发电,成为未来一个更清洁环保的源呢?

2015-12-02 课时:4分钟

为什么基因治疗成为消灭HIV的合理工具 - David Baltimore P2

本视频由科普中国和生物医学大讲堂出品

David Baltimore (Caltech) Part 2: Why Gene Therapy Might be a Reasonable Tool for Attacking HIV

Lecture Overview:
In this set of lectures, I describe the threat facing the world from the human immunodeficiency virus (HIV) and a bold proposal on how we might meet the challenge of eliminating this disease by engineering the immune system.

In part 1, I provide a broad introduction to viruses, describing their basic properties and my own history of studying the replication of RNA viruses which led to the discovery of reverse transcriptase. I also illustrate the distinguishing features of equilibrium viruses (e.g. the common cold) that have adapted to co-exist with their host and non-equilibrium viruses (e.g. HIV) that have recently jumped from another species, are not adapted to the new host, and which can lead to disastrous outcomes (e.g. loss of immune function with potential lethality in the case of HIV).

In part 2, I describe the growing health problem that is facing the world with the spread of HIV and the limitations of current drug therapies and vaccine strategies. We need new ideas for tackling this problem. Here and in the next segment, I describe bold strategies of using gene therapy to conquer HIV, The approach that I describe in this segment involves gene therapy to produce short hairpin RNAs (siRNA) that target the destruction of a critical co-receptor of HIV, which the viruses that needs to infect cells. I discuss initial proof-of-principle experiments that suggest this approach might be feasible and the next steps needed to develop this idea into a real therapy.

In this last segment, I describe another gene therapy strategy for HIV in which we propose to develop antibody-like proteins that can be expressed by a patient's B cells and will target the HIV virus for destruction. To achieve this objective, hematopoietic (blood) stem cells must to be targeted with the gene, which will ultimately develop into B cells that express the therapeutic molecule. The ultimate goal is to produce a life-long supply of anti-HIV neutralizing antibodies. In this lecture, I describe the molecular methods underlying this strategy and a development path from proof-of-principle studies in mouse to safe trials in humans. This project receives funding from the Bill and Melinda Gates Foundation.

Speaker Bio: After serving as President of the California Institute of Technology for nine years, in 2006 David Baltimore was appointed President Emeritus and the Robert Andrews Millikan Professor of Biology. Born in New York City, he received his B.A. in Chemistry from Swarthmore College in 1960 and a Ph.D. in 1964 from Rockefeller University, where he returned to serve as President from 1990-91 and faculty member until 1994.

For almost 30 years, Baltimore was a faculty member at Massachusetts Institute of Technology. While his early work was on poliovirus, in 1970 he identified the enzyme reverse transcriptase in tumor virus particles, thus providing strong evidence for a process of RNA to DNA conversion, the existence of which had been hypothesized some years earlier. Baltimore and Howard Temin (with Renato Dulbecco, for related research) shared the 1975 Nobel Prize in Physiology or Medicine for their discovery, which provided the key to understanding the life-cycle of HIV. In the following years, he has contributed widely to the understanding of cancer, AIDS and the molecular basis of the immune response. His present research focuses on control of inflammatory and immune responses as well as on the use of gene therapy methods to treat HIV and cancer in a program called "Engineering Immunity".

Baltimore played an important role in creating a consensus on national science policy regarding recombinant DNA research. He served as founding director of the Whitehead Institute for Biomedical Research at MIT from 1982 until 1990. He co-chaired the 1986 National Academy of Sciences committee on a National Strategy for AIDS and was appointed in 1996 to head the National Institutes of Health AIDS Vaccine Research Committee.

In addition to receiving the Nobel Prize, Baltimore's numerous honors include the 1999 National Medal of Science, election to the National Academy of Sciences in 1974, the Royal Society of London, and the French Academy of Sciences. For 2007/8, he is President of the AAAS. He has published more than 600 peer-reviewed articles.

2015-12-14 课时:31分钟

fMRI:功磁共振成像

磁共振成像(fMRI)技术是一种非侵入性影像学技术,用于研究健康个体和大脑状态异常的群体的人脑功和认知。功磁共振成像利用磁共振信号来检测当执行一个特定任务时神经元激活引起的血流变化。它得以实现,是因为血液中的血红蛋白根据它是否结合氧气具有不同的磁特性。当执行特定任务时,含氧血液流入到负责该功的脑区,而这个流入随后可用特定的MRI扫描仪参数检测得到。这种现象被称为血氧浓度相依对比(BOLD)效果,可以用于创建脑活动的图谱。

本短片首先简要概述了如何获得MRI和fMRI信号。然后,回顾了基本的实验设计,这包括先建立一个刺激呈现模式,它是专门设计来检测将被定位的功。接下来,介绍了进行功磁共振成像扫描的关键步骤,包括受试者的安全和准备扫描仪。再演示了用于数据处理的常用步骤,包括预处理和用一般线性模型进行的统计学分析。最后,概述了功磁共振成像的某些特定的应用,如研究心理障碍疾病的脑功异常,以及将功磁共振成像与其他成像模式,如弥散张量成像(DTI)结合使用。

2016-01-08 课时:10分钟

杜弈奇:益生菌在IBS功性胃肠病治疗上的研究-第3段

本短片讨论了IBS功性胃肠病的发病率,使用婴儿双歧杆菌35624、植物乳酸杆菌299v(DSM 9843)的治疗效果,以及益生菌疗效不确定性的研究。

2016-01-21 课时:5分钟

阿尔茨海默症跟衰老无关——我们一定治好它

目前全世界有超过4000万人深受阿尔茨海默症(Alzheimer’s disease)困扰,而且这个数字正在快速地增加。然而从该疾病被发现开始已经超过100年,我们依然没有找到有效的治疗方式。科学家 Samuel Cohen 分享了他的实验室在研究阿尔茨海默症方面的最新进展,以及随之而来的新希望。"阿尔茨海默症是疾病," Cohen 说,"而且我们可以治好它。"

2016-02-14 课时:8分钟

细胞的启示,源的高效利用

Humans face the challenge of dwindling resouces. Simons suggests that engineers of the future will be inspired by biologist's understanding of cells to design efficient high tech solutions. However, he makes a strong argument for a balance with low tech solutions that are simple, efficient and use very little energy.

2016-02-23 课时:8分钟

裴端卿:用“万细胞”延缓衰老是可行的

在外界看来,他是首届国家中长期规划“干细胞研究”计划专家组召集人,承担着为中国在该领域实现突破的重大责任;在研究领域,他是带着光环的领军“学霸”;在学生眼里,他是“身先士卒”的导师。而在他自己看来,够代表国家成为人类未知领域的一名探索者,是一生最大的荣耀,他就是中国科学院广州生物医药与健康研究院院长裴端卿。

本周六晚,由中央电视台综合频道和唯众传媒联合制作的中国首档电视青年公开课《开讲啦》将邀请裴端卿做客,谈及“再生细胞”对减缓衰老的应用,裴端卿表示:“趁还年轻的时候干预它,实现延缓衰老是可行的。”

尿液成为“不老泉”?

“尿液中有非常健康的细胞,通过对它们重新编程,可以把它们的命运逆转到受精以后5-6天的状态,这种状态具有产生人体所有组织细胞和器官的潜,可产生皮肤、心脏、血管等,条件成熟时将它们重新植回人体,就可以替代我们已经丧失的功。”2013年,裴端卿与他的团队从人的尿液中寻找到了“万细胞”,并从中培养出了一颗人的牙齿。2015年,又宣布发现了细胞在结构上“返老还童”的关键机制。这意味着在不远的将来,科学家或许还可以将这些细胞培养其他器官,移植到人体损伤部位以便替换衰老的组织或器官,治疗疾病,延长人类生命。

在裴端卿看来,人类首先应该找到衰老或者不衰老的基本规律,这些规律会在各种特性疾病领域的治疗中产生比较广泛的应用价值。裴端卿说:“如果够知道细胞命运,包括衰老在内的一些基本规律,我们在年轻的时候、在还可以干预它的时候,让衰老延缓,这个是可行的。”

现实版的“生化危机”会出现吗?

在感受科学神奇力量的同时,常常伴随着对其安全性的忧虑。节目现场,青年代表提出了自己的疑惑——科学家们对细胞、基因的各类实验越来越前端,那么电影《生化危机》里,由于科学家实验而造成的生化灾难会不会某一天真的成为现实?

裴端卿教授巧妙回应:“我们发明了原子弹,但也只在特殊的历史时期用过,现在人类已经拥有毁灭地球的力,但同时也有足够的自制力与智慧。”一项新的技术诞生之时,的确需要全社会去讨论它的社会应用的风险,把这个研究清楚之后,依靠人类的智慧和完备的机制进行监管,减少风险产生的可。正是因为科学具有这种可控性,《生化危机》的场景就不会出现。

2016-03-21 课时:4分钟

裴端卿:干细胞技术带来延长生命的可

本期节目主要内容: 听说,世界上有这么一位科学家,在中国研究人类“长生不老”的秘密。他就是中国科学院­广州生物医药与健康研究院院长裴端卿。2013年,他与他的团队从尿液里找到“不老泉­”,成功提取稳定的多干细胞,并成功地培育出了人类的再生牙齿。还想知道更多关于生­物细胞学的知识吗?敬请关注本期节目。

2016-03-22 课时:45分钟

从古希腊到21世纪,对多细胞生物中的再生力的研究

Alejandro Sanchez-Alvarado (Stowers Institute for Medical Research) Part 1: History of Regeneration

Regeneration has fascinated philosophers and scientists since the beginning of history. The wide but uneven distribution of regenerative capacities among multicellular organisms is puzzling, and the permissive/inhibitory mechanisms regulating this attribute in animals remain a mystery. In the first part of this lecture, I will provide a general history of regeneration research from ancient Greece to the beginning of the 20th century. Key concepts will be introduced in their appropriate historical context, and many of the unanswered questions put forward by the problem of regeneration will be discussed.

Alejandro Sánchez Alvarado moved from the University of Utah to the Stowers Institute for Medical Research in 2011.

2016-04-01 课时:33分钟