打开APP

卫材Fycompa(卫克泰®,吡仑帕奈)新型细颗粒制剂在日本上市,片剂1月在中国上市!

在中国,Fycompa片剂于1月上市,辅助治疗≥12岁患者的部分发作性癫痫。

2020-07-12

基于酶单分子纳米胶囊技术的生物传感器研究获进展

近日,中国科学院大连化学物理研究所生态环境评价与分析研究组研究员卢宪波、陈吉平团队研发的基于酶单分子纳米胶囊(SMENs)技术的生物传感器取得新进展,酶传感器的热稳定性、有机溶剂耐受性、酸碱耐受性、存储稳定性等核心性能实现质的提高,率先将SMENs技术应用于分析和生物传感领域。酶生物传感器具有简单、快速、廉价、便携、微型化等优势,在医疗诊断、食品、环境等领域

2020-07-08

纳米海绵“吸走”新冠病毒

加州大学圣地亚哥分校(UCSD)的张良方教授团队联合波士顿大学(Boston University)的Anthony Griffiths教授团队,在纳米领域的顶尖期刊Nano Letters上发表了他们的最新研究结果——该联合团队开发了一种纳米海绵,已在细胞实验中证实可以“吸走”新冠病毒,让它们的感染能力下降90%!后续的动物研究正在进行之中。张良方教授是纳

2020-06-27

来自羊驼的纳米抗体如何变革COVID-19治疗?

2020年6月25日讯 /生物谷BIOON /——Rocky和Marley已经习惯了有科学家作伴。这两只大羊驼生活在马萨诸塞州农村的牧场上,和它们的许多同类一样,它们多年来一直参与研究,以利用它们神奇的免疫系统。然而,今天,这种高贵的动物正面临着前所未有的国际关注:科学家们希望,大羊驼制造的特殊抗体可以直接用于对抗SARS-CoV-2,帮助我们摆脱这种流行病

2020-06-25

Nature子刊突破:“DNA折纸术”来确定疫苗设计规则,纳米疫苗有望治疗COVID-19等多种疾病!

2020年7月2日讯 /生物谷BIOON /——通过将DNA折叠成类似病毒的结构,麻省理工学院的研究人员设计出了一种类似HIV的颗粒,这种颗粒可以激发在实验室培养皿中生长的人体免疫细胞产生强烈的免疫反应。这些颗粒可能最终被用作HIV疫苗。这些DNA颗粒的大小和形状与病毒非常相似,表面覆盖着HIV蛋白或抗原,它们以精确的方式排列,以激发强烈的免疫反应。研究人员

2020-07-02

Nano Letter:细胞纳米海绵显著抑制SARS-CoV-2感染细胞!

2020年6月23日讯 /生物谷BIOON /——包裹在人肺细胞膜和人体免疫细胞膜中的纳米颗粒可以吸引和中和细胞培养中的SARS-CoV-2病毒,导致病毒失去劫持宿主细胞和繁殖的能力。6月17日发表在《纳米快报》(Nano Letters)杂志上的第一批数据描述了抗击COVID-19的新方向。这种"纳米海绵"由加州大学圣地亚哥分校(UCSD)的工程师开发,并

2020-06-23

智能金纳米管阻止癌细胞产生化疗耐药性!

2020年6月21日讯 /生物谷BIOON /——化疗药物是许多恶性肿瘤治疗的基础。然而,目前的化疗仍远不能令人满意,主要原因是化疗药物的严重副作用和癌细胞的耐药。因此,构建一种理想的化疗策略来逆转耐药性是必要的。中国科学院深圳先进技术研究院(SIAT)的研究人员开发了一种智能纳米系统,该系统具有更高的疗效和更低的副作用。图片来源:SIAT这项研究发表在Jour

2020-06-21

Science子刊:中性粒细胞偏好吞噬杆状颗粒,或有助治疗COVID-19患者中的细胞因子风暴

2020年6月16日讯/生物谷BIOON/---免疫系统过度反应是导致COVID-19患者死亡的最常见原因。一类长期被忽视的白细胞可能在这种过度反应中起着至关重要的作用。在一项新的研究中,来自美国密歇根大学的研究人员发现杆状颗粒可让它们脱离循环。相关研究结果发表在2020年6月10日的Science Advances期刊上,论文标题为“Neutrophils

2020-06-16

“诱饵”纳米颗粒可以阻断艾滋病毒并防止感染

2020年5月13日讯 /生物谷BIOON /——加州大学圣地亚哥分校的工程师们开发了一种有前途的新"纳米海绵体"方法防止艾滋病病毒在体内增殖:给聚合物纳米粒子涂上辅助T细胞的细胞膜,并将之转化成诱饵拦截病毒粒子和阻止他们结合和进入人体的免疫细胞。这项由纳米工程教授张良方领导的纳米材料和纳米医学实验室开发的技术,可以应用于许多不同种类的病毒,为有希望对抗难以对付

2020-05-13

Nat Methods:新的成像技术可以显示整个细胞和组织内的纳米级结构

2020年5月29日讯/生物谷BIOON /--自从350年前Robert Hooke第一次在微生物学中描述细胞以来,显微镜在理解生命的规则中扮演了重要的角色。然而,最小的可分辨特征--分辨率--受光的波动特性所限制的。这个有百年历史的屏障限制了对细胞功能、相互作用和动力学的理解,尤其是在亚微米到纳米尺度上。超分辨率荧光显微镜克服了这一基本限制,提供了高达1

2020-05-29