打开APP

潘湘斌:外科理念介入方式 MitralStitch让二尖瓣反治疗更容易

10月11日,中国“结构人”的盛会 -- 2019年中国结构周进入第五天。上午10时,作为二尖瓣介入治疗版块的重头戏,中国医学科学院阜外医院、MitralStitch® 系统临床科学家潘湘斌教授团队向大会转播了一台使用德晋医疗 MitralStitch® 二尖瓣瓣膜修复系统进行的二尖瓣修复手术,成功为一名外科高危的二尖瓣反流患者进行了腱索修复的介入治疗。 潘湘斌教授手术演示中 潘湘斌教授手术

2019-10-13

研究开发新型滴反应筛选技术并开展单细胞分析应用

 中国科学院微生物研究所微生物资源前期开发国家重点实验室杜文斌研究组和黄力研究组共同开发了一种新型的微流控界面纳升注射技术(Interfacial Nanoinjection, INJ),该技术可以将传统的生化反应体系微缩在一个纳升体积的油包水微液滴体系中完成。针对这一技术创新,团队申请了多项中国发明专利和美国专利,并研制了基于INJ技术的小型桌面系统。该系统和国外同类产品如美国Labc

2019-10-14

研究揭示聚苯乙烯塑料对人类肺泡上皮细胞的毒性

  微塑料作为一种新型污染物在大气中多以悬浮性细颗粒物的形式存在,可随着呼吸进入人体,与呼吸道黏膜和肺细胞产生接触,并影响其生理功能。微塑料因其粒径小,并具有一定组织亲和性,更易于吸附在细胞表面,破坏膜结构,尤其更容易被细胞以多种机制内吞并在胞内累积,从而造成细胞基因表达和调控的异常,引发炎症反应,甚至引起癌变。中国科学院沈阳应用生态研究所微生物资源与生态组、污染生态过程组在该

2019-10-09

研究人员揭示甲病毒利用特殊结构进行进化的机制

甲型流感病毒的复制依赖于病毒对宿主细胞表面的粘附性,病毒的繁殖则需要子代病毒粒可以从受感染的宿主细胞中脱离并扩散到相邻的易感宿主细胞。病毒的粘附功能取决于病毒包膜上含量更为丰富的糖蛋白,血凝素(HA或H)。而病毒另一表面糖蛋白,神经胺酸酶(NA或N),其功能则是剪切宿主细胞的表面和HA粘附的分子,促使病毒从受感染的宿主细胞脱离。HA和NA同时也作为流感病毒的表面抗原,并且由于不同环境刺激,例如来自

2019-10-03

自动化技术革新RNA-Seq文库构建流程 --- FLUIDIGM发布更高效、更节约成本的Advanta RNA-Seq NGS 文库构建解决方案

作为不断创新的生物科技领导者,Fluidigm公司长期致力于通过全方位的健康洞察力来改善人们的生活。近日,Fluidigm公司发布了最新的Advanta RNA-Seq NGS 文库制备解决方案。该方案利用微流控自动化技术,为RNA-seq二代测序文库制备流程带来突破性的变革,不但极大提高了中高通量实验室的工作效率,同时也大幅降低了实验成本。Advanta™ RNA-Seq NGS L

2019-09-20

环境控释型生物材料研究取得进展

心肌梗死(MI)是由冠状动脉闭塞缺血、缺氧所导致的不可逆的心肌损伤,是目前世界范围内心血管死亡和致残的主要原因。心脏缺血导致心肌细胞大量死亡,同时局部上调的基质金属蛋白酶(MMPs)降解心脏细胞外基质(ECM),降低组织力学性能,导致梗死区域心室壁逐渐变薄,整体扩张,加速心功能恶化。原位恢复梗死区域的血供,减轻ECM降解成为治疗心肌梗死的潜在手段。研究表明,心肌内注射生物材料和生物活性因子(如血管

2019-10-01

氧条件土壤中微生物亚铁氧化耦合砷固定过程研究获进展

微生物驱动亚铁氧化过程在水稻土中十分普遍,形成铁氧化物表面正电荷丰富,可作为有效的吸附剂固定土壤中的重金属。近中性环境中,亚铁极易被氧气氧化,因此亚铁氧化过程的研究主要集中在厌氧条件下。但水稻土环境条件特殊,存在周期性的氧化还原作用,在水稻土中能形成大面积的微氧区域。只有在微氧条件下,中性微氧亚铁氧化菌才能抗衡氧气的竞争,进行有效的微生物亚铁氧化和代谢过程。微氧亚铁氧化菌能利用氧气作为电子受体将亚

2019-10-03

Talanta:报道高灵敏和防污染的“准共聚焦”液滴数字PCR阅读仪

清华大学医学院生物医学工程系郭永实验室在《分析学家》(Analyst)在线以封底(back cover)发表题为《一种双荧光四分类微液滴数字PCR数据的准确、可靠和自动分类方法——密度分水岭算法》(A density-watershed algorithm (DWA) method for robust, accurate and automatic classification of dual-

2019-10-04

创注射细胞“支架”修复心脏

  为什么心梗如此致命?这绕不开心脏的一个重要特点:心脏是在人体内最缺乏再生能力的器官。心肌的新陈代谢非常活跃,一旦心梗,心肌在供血中断后的几小时内会很快死亡。而且心脏自身无法长出新的心肌,只能通过形成疤痕而愈合。目前还没有治疗方法可以修复心肌组织的损伤,即便心梗患者抢救成功,由此导致的心肌功能减弱也会引起心力衰竭等并发症。好消息是,一种新的技术有望带来突破。近日,加州大学圣地

2019-09-17

基于技术的机体/器官芯片在药物开发中的应用

2019年8月16日讯 /生物谷BIOON /——器官芯片,作为一种基于微加工技术的的微流体器件,近年来在体外器官模型得到了广泛的研究。由于它可能在物理和化学方面采用微流体装置技术模拟体外环境,因此维持可以通器官芯片来维持细胞功能和形态,并复制器官间的相互作用。来自日本东海大学(Tokai University)和东京大学(The University of Tokyo)的研究人员发表了一篇综述文

2019-08-16