首页 » 标签 :“水稻”(共找到约500条相关新闻)
  • 全球水稻去驯化、趋同野化的证据找到了

     近日,开放获取期刊《基因组生物学》(Genome Biology)在线发表了全球首次杂草稻调查研究结果。浙江大学教授樊龙江领导的一个国际研究团队,通过对全球稻区杂草稻(俗称鬼稻)材料采集与分析发现,水稻在世界各稻区均存在野化或去驯化的现象,并描绘了野化水稻的基因组特征。该成果对水稻进化、资源利用和杂草稻防控具有重要意义。“野化”(feraliza

  • 科学家发现增加水稻分蘖数和产量的重要基因

     上世纪50-60年代,育种学家利用“矮化基因”改良水稻、小麦等作物株型,培育高产品种,被称为“绿色革命”。虽然“绿色革命”带来了高产的株型,但是这种复杂且决定产量的性状究竟由什么因素决定,科学家并不清楚。近日,中国科学院院士钱前、李家洋和中国农科院深圳农业基因组研究所研究员熊国胜带领的团队在《分子植物》(Molecular Plant)在线发表最

  • 研究发现GDSL家族脂酰水解酶MHZ11调控水稻根部乙烯反应机制

    乙烯在单子叶作物水稻适应半水生环境以及调控多种农艺性状中发挥重要作用。前期课题组建立了一个有效的突变体筛选系统,筛选了一系列水稻乙烯反应突变体,命名为猫胡子突变体(mhz)。通过对水稻乙烯突变体的分析,鉴定了与双子叶模式植物拟南芥相比保守的组分,发现了乙烯信号途径的新调控组分及与其它激素互作的新机制。中国科学院遗传与发育生物学研究所研究人员进一步对一个水稻

  • 研究揭示OsPID调控水稻花器官发育的分子机制

     水稻是世界上一半以上人口的主粮,其产量主要受每穗粒数、每株穗数、千粒重等影响。其中每穗粒数与每穗颖花数密切相关,因此颖花的发生和发育直接影响了水稻的产量。在拟南芥中,PINOID (PID)可以通过调控生长素外流载体PIN家族蛋白的亚细胞定位来调节生长素的分布(Friml et al., 2004; Lee and Cho, 2006)。AtPI

  • 赤霉素信号传导新机制提高水稻氮肥利用效率研究获进展

     上世纪60年代,以矮化育种为标志的“绿色革命”使水稻和小麦具有耐高肥、抗倒伏和高产的优良特性,但同时也存在氮肥利用效率低的缺点,其产量增加对化肥的依赖性高。持续大量的氮肥投入不仅增加种植成本,还导致环境污染。农业农村部公布2019年我国三大粮食作物的化肥利用率为39.2%,远低于世界平均水平,更远低于欧美等发达农业国家水平。如何减少农业生产中的氮

  • 水稻根际和非根际土微生物碳源利用效率对施肥的响应研究获进展

    陆地生态系统中,微生物在调控碳循环过程中扮演着两种截然不同的角色:1)通过分解代谢作用使有机物矿化向大气释放CO2;2)将非稳态的有机碳通过微生物“碳泵”的形式不断形成稳定态有机碳库。微生物这种分解代谢与合成代谢的相对过程强弱可以通过碳源利用效率(CUE)反映,其决定了土壤中碳周转的去向。中国科学院亚热带农业生态研究所研究员苏以荣团队选取经过31年不同施肥处

  • 袁隆平推出“袁梦计划” 3年种植耐盐碱地水稻20万亩

     “好吃好吃……”中国工程院院士袁隆平13日在三亚端着刚刚出锅的“袁蒙大米”吃了起来,连说多个“好吃”。记者与一众参会嘉宾也品尝了这款耐盐碱地水稻大米,口感获得众人称赞。13日,正在三亚工作的袁隆平,在工作间隙与阿里巴巴数字农业事业部推出“袁梦计划”,未来3年,在内蒙古兴安盟合作开发耐盐碱地水稻种植20万亩,让当地水稻种植户收入实现翻番。此前,袁隆

  • 水稻基因组 “垃圾 DNA” 的真相

     对于动植物的 DNA 来说,仅有不到 5% 能够翻译成蛋白质,进行生命活动。而大部分 DNA 转录成 RNA 之后,便不再继续翻译,这些非编码 RNA 一度被认为是转录中的 “噪音”“暗物质”, 甚至有人认为这是 “垃圾 DNA”。近十年来,随着探索未知的技术的进步,这些所谓 “垃圾 DNA” 的重要性才开始为人们所了解。近日,来自中国农业科学院

  • 新的控制水稻粒宽基因被发现

     近日,华中农业大学教授邢永忠课题组从T-DNA插入突变体中鉴定到一个控制水稻粒宽的基因WIDE GRAIN 7(WG7),其通过直接与OsMADS1启动子结合而上调其表达量,增强了组蛋白H3K4me3在启动子中的富集,并最终增加了籽粒宽度。相关成果发表在《植物期刊》上。WG7突变体来源于粳稻“ Hwayoung”(HY)背景下的水稻T-DNA插入

  • 科学家从全基因组水平揭示lncRNA调控水稻重要农艺性状变异的分子机制

     近日,中国农业科学院作物科学研究所水稻优异种质资源发掘与创新利用创新团队、作物基因组选择育种创新团队和华盛顿圣路易斯大学的肯·奥尔森团队合作完成了水稻(亚洲栽培稻)及其祖先种(普通野生稻)非编码区长链非编码RNA(lncRNA)的注释,研究了水稻lncRNA的进化历史,并从全基因组水平揭示了lncRNA调控水稻重要农艺性状变异的分子机制。相关研究