打开APP

抗原提呈和树突状细胞 - Ira Mellman Part 2

本视频由科普中国和生物医学大讲堂出品

早在100多年前,科学家就已经发现,免疫反应是由先天性和适应性免疫两个系统构成。而负责连接这两部分免疫反应的细胞类型,是最近才发现的树突状细胞。树突状细胞具有检测保守微生物产物的能力,可以激活细胞的先天免疫反应,并捕捉到广泛多样的微生物抗原抗体,也可以激活适应性免疫反应。抗原提呈和树突状细胞的独特能力,反映了细胞生物学的一系列显著的特化作用。

Ira Mellman (Genentech) Part 2: Antigen Presentation and Dendritic Cells

The immune response integrates two distinct systems of innate and adaptive immunity discovered over 100 years ago. Linking these two arms of the immune response is the task of a comparatively recently identified cell type, the dendritic cell. Dendritic cells have the capacity to detect the conserved microbial products that activate cells of the innate immune response and capture the dramatically wider diversity of microbial antigens to prime antibody and T cell responses characteristic of adaptive immunity. The unique capacity of dendritic cells for antigen processing and presentation reflects a series of remarkable specializations of basic principles of cell biology.

下载生物谷APP,观看行云学院视频,让播放更流畅,使用更快捷! 生物谷APP,每天都有新资讯,每天都有好视频! 官方下载地址:http://www.medsci.cn/m/

2016-01-05 课时:66分钟

Controlling the Cell Cycle: Introduction - David O. Morgan

本视频由科普中国和生物医学大讲堂出品

David O. Morgan (UCSF) Part 1: Controlling the Cell Cycle: Introduction

Cells reproduce by duplicating their chromosomes and other components and then distributing them into a pair of genetically identical daughter cells. This series of events is called the cell cycle. In the first part of this lecture, I provide a general overview of the cell-cycle control system, a complex regulatory network that guides the cell through the steps of cell division. I briefly describe the major components of this regulatory system and how they fit together to form a series of biochemical switches that trigger cell-cycle events at the correct time and in the correct order.

下载生物谷APP,观看行云学院视频,让播放更流畅,使用更快捷!
生物谷APP,每天都有新资讯,每天都有好视频!
官方下载地址:http://www.medsci.cn/m/

2016-01-07 课时:29分钟

Controlling the Cell Cycle: Cdk Substrates - David O. Morgan

本视频由科普中国和生物医学大讲堂出品

David O. Morgan (UCSF) Part 2: Controlling the Cell Cycle: Cdk Substrates

Cyclin-dependent kinases (Cdks) are the central components of the control system that initiates the events of the cell cycle. In the second part of this lecture, I discuss my laboratory's efforts to address the problem of how the Cdks trigger cell-cycle events. I describe our methods for identifying the protein substrates of the Cdks, and I discuss how these studies have led to important clues about how Cdks find their correct targets in the cell and how phosphorylation of those targets governs their function.

2016-01-08 课时:31分钟

Controlling the Cell Cycle: Anaphase Onset - David O. Morgan

本视频由科普中国和生物医学大讲堂出品

David O. Morgan (UCSF) Part 3: Controlling the Cell Cycle: Anaphase Onset

In the anaphase stage of the cell cycle, the duplicated chromosomes are pulled apart by a machine called the mitotic spindle, resulting in the distribution of a complete set of chromosomes to each of the daughter cells. In the third part of this lecture, I describe the combination of biochemistry and microscopy in my laboratory that led to the discovery of a regulatory switch that triggers the abrupt and synchronous separation of the chromosomes at the onset of anaphase.

2016-01-08 课时:22分钟

Protein synthesis: mRNA surveillance by the ribosome

Rachel Green (Johns Hopkins U., HHMI) 2: Protein synthesis: mRNA surveillance by the ribosome

Talk Overview:
In her first talk, Green provides a detailed look at protein synthesis, or translation. Translation is the process by which nucleotides, the “language” of DNA and RNA, are translated into amino acids, the “language” of proteins. Green begins by describing the components needed for translation; mRNA, tRNA, ribosomes, and the initiation, elongation, and termination factors. She then explains the roles of these players in ensuring accuracy during the initiation, elongation, termination and recycling steps of the translation process. By comparing translation in bacteria and eukaryotes, Green explains that it is possible to determine which components and steps are highly conserved and predate the divergence of different kingdoms on the tree of life, and which are more recent adaptations.
Green’s second talk focuses on work from her lab investigating how ribosomes detect defective mRNAs and trigger events leading to the degradation of the bad RNA and the incompletely translated protein product and to the recycling of the ribosome components. Working in yeast and using a number of biochemical and genetic techniques, Green’s lab showed that the protein Dom34 is critical for facilitating ribosome release from the short mRNAs that result from mRNA cleavage. Experiments showed that Dom34-mediated rescue of ribosomes from short mRNAs is an essential process for cell survival in higher eukaryotes.

Speaker Biography:
Rachel Green received her BS in chemistry from the University of Michigan. She then moved to Harvard to pursue her PhD in the lab of Jack Szostak where she worked on designing catalytic RNA molecules and investigating their implications for the evolution of life. As a post-doctoral fellow at the University of California, Santa Cruz, Green began to study how the ribosome translates mRNA to protein with such accuracy.

Currently, Green is a Professor of Molecular Biology and Genetics at the Johns Hopkins School of Medicine and an Investigator of the Howard Hughes Medical Institute. Research in her lab continues to focus on the ribosome and factors involved in the fidelity of eukaryotic and prokaryotic translation.

Green is the recipient of a Johns Hopkins University School of Medicine Graduate Teaching Award as well as the recipient for numerous awards for her research. She was elected to the National Academy of Sciences in 2012.

2016-04-28 课时:38分钟

PureBlu™ Hoechst 33342 Nuclear Staining Dye for Live Cells - A Fast Approach to Staining Nuclei

This brief tutorial demonstrates the use of the PureBlu Hoechst 33342 Dye with the ZOE™ Fluorescent Cell Imager for routine nuclear staining in fluorescence microscopy and cell imaging applications.

2016-06-15 课时:3分钟

Snapshots of Metalloproteins in Action

1、金属蛋白定义 2、某些惊人的反应:固碳与氧的演化、无氧碳固定术、固氮(作用)、初级代谢的分子转变、核酸代谢的分子变换、建筑分子支架 、剪裁分子支架。 3、金属反应性的生物危害性 4、金属蛋白的应用研究 5、研究金属蛋白的技术挑战和益处 6、以快照的金属蛋白

2016-07-21 课时:44分钟

Metalloproteins and Medicine

如何采取快照?为什么拍快照?我们的快照的酶的人群、核糖核酸还原酶、活性部位自由基的产生、变构调节、RNRs是重要的药物靶点;抗肿瘤、抗寄生虫和抗病毒治疗,在此一一为您讲解。

2016-07-21 课时:33分钟

Metalloproteins and the Environment

B12定位在CH3转移cfesp如何?摆动夹紧动作B12 17 Å.复杂我们守在这里 。你为什么需要140(或220)为转移甲基?在一部分,以形成一个稳定的框架,以允许这些大;构象变化是催化的关键。

2016-07-21 课时:34分钟

The eolution of collective behavior集体行为的进化

互动产生网络,互动网络是如何演变的?新的路径如何形成?跟随戈登对12000种蚂蚁探索、开发、繁殖研究的脚步,看看互动网络应对环境挑战的发展吧。

2016-07-22 课时:21分钟